Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Biol Macromol ; : 134581, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122078

RESUMO

Potato late blight is the most devastating pre- and post-harvest crop disease in the world, which is widespread and difficult to control, causing serious economic losses. Cultivating resistant varieties is a major way to prevent and control late blight in a green way. However, due to the rapid evolution of pathogens, the plant resistance is losing. Therefore, mining effective and durable genes involved in disease resistance is crucial for breeding resistant varieties against late blight. In this study, we took "potato-Phytophthora infestans" as the "host-pathogen" model system to discover the potential disease resistance-related genes and elucidate their molecular functional mechanism. Through yeast two-hybridization, bimolecular fluorescence complementation, Co-immunoprecipitation assays, and gene function validation etc., we found that ribosomal protein S6 kinase 2 (StS6K2) is a key resistant protein, which is interacted with StWRKY59 transcription factor. Overexpression of StS6K2 and StWRKY59 both enhanced the plants resistance to P. infestans, and promoted the host immune response, such as ROS burst and callose deposition. In OEStWRKY59 lines, DEGs involved in secondary metabolites synthesis, plant hormone signaling transduction and plant-pathogen interaction were significantly enriched. These findings provide novel genetic resources for the breeding of resistant varieties.

2.
Heliyon ; 10(14): e34721, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148966

RESUMO

Brucellosis, a zoonotic disease caused by Brucella, presents a significant threat to both animal and human health. In animals, the disease can lead to infertility, miscarriage, and high fever, while in humans, symptoms may include recurrent fever, fatigue, sweating, hepatosplenomegaly, and joint and muscle pain following infection. Treatment often involves long-term antibiotic therapy, placing a substantial psychological and financial burden on patients. While vaccination is crucial for prevention, current animal vaccines have drawbacks such as residual virulence, and a safe and effective human vaccine is lacking. Hence, the development of a vaccine for brucellosis is imperative. In this study, we utilized bioinformatics methods to design a multi-epitope vaccine targeting Brucella. Targeting Heme transporter BhuA and polysaccharide export protein, we identified antigenic epitopes, including six cytotoxic T lymphocyte (CTL) dominant epitopes, six helper T lymphocyte (HTL) dominant epitopes, one conformation B cell dominant epitope, and three linear B cell dominant epitopes. By linking these epitopes with appropriate linkers and incorporating a Toll-like receptor (TLR) agonist (human beta-defensin-2) and an auxiliary peptide (Pan HLA-DR epitopes), we constructed the multi-epitope vaccine (MEV). The MEV demonstrated high antigenicity, non-toxicity, non-allergenicity, non-human homology, stability, and solubility. Molecular docking analysis and molecular dynamics simulations confirmed the interaction and stability of the MEV with receptors (MHCI, MHCII, TLR4). Codon optimization and in silico cloning validated the translation efficiency and successful expression of MEV in Escherichia coli. Immunological simulations further demonstrated the efficacy of MEV in inducing robust immune responses. In conclusion, our findings suggest that the engineered MEVs have the potential to stimulate both humoral and cellular immune responses, offering valuable insights for the future development of safe and efficient Brucella vaccines.

3.
Life Sci ; 355: 122986, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151885

RESUMO

Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.

4.
J Environ Sci (China) ; 146: 163-175, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969445

RESUMO

Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature, the lack of secondary pollution to the environment, and their low cost over the last a few years. In this paper, the latest progress in the research on the activation of persulfate by heterogeneous iron-based catalysts is reviewed from two aspects, in terms of synthesized catalysts (Fe0, Fe2O3, Fe3O4, FeOOH) and natural iron ore catalysts (pyrite, magnetite, hematite, siderite, goethite, ferrohydrite, ilmenite and lepidocrocite) focusing on efforts made to improve the performance of catalysts. The advantages and disadvantages of the synthesized catalysts and natural iron ore were summarized. Particular interests were paid to the activation mechanisms in the catalyst/PS/pollutant system for removal of organic pollutants. Future research challenges in the context of field application were also discussed.


Assuntos
Ferro , Sulfatos , Poluentes Químicos da Água , Catálise , Ferro/química , Sulfatos/química , Poluentes Químicos da Água/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos
5.
J Anim Sci Biotechnol ; 15(1): 73, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824596

RESUMO

BACKGROUND: Pork quality is affected by the type of muscle fibers, which is closely related to meat color, tenderness and juiciness. Exosomes are tiny vesicles with a diameter of approximately 30-150 nm that are secreted by cells and taken up by recipient cells to mediate communication. Exosome-mediated muscle-fat tissue crosstalk is a newly discovered mechanism that may have an important effect on intramuscular fat deposition and with that on meat quality. Various of adipose tissue-derived exosomes have been discovered and identified, but the identification and function of muscle exosomes, especially porcine fast/slow myotube exosomes, remain unclear. Here, we first isolated and identified exosomes secreted from porcine extensor digitorum longus (EDL) and soleus (SOL), which represent fast and slow muscle, respectively, and further explored their effects on lipid accumulation in longissimus dorsi adipocytes. RESULTS: Porcine SOL-derived exosomes (SOL-EXO) and EDL-derived exosomes (EDL-EXO) were first identified and their average particle sizes were approximately 84 nm with double-membrane disc- shapes as observed via transmission electron microscopy and scanning electron microscopy. Moreover, the intramuscular fat content of the SOL was greater than that of the EDL at 180 days of age, because SOL intramuscular adipocytes had a stronger lipid-accumulating capacity than those of the EDL. Raman spectral analysis revealed that SOL-EXO protein content was much greater than that of EDL-EXO. Proteomic sequencing identified 72 proteins that were significantly differentially expressed between SOL-EXO and EDL-EXO, 31 of which were downregulated and 41 of which were upregulated in SOL-EXO. CONCLUSIONS: Our findings suggest that muscle-fat tissue interactions occur partly via SOL-EXO promoting adipogenic activity of intramuscular adipocytes.

6.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825295

RESUMO

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Assuntos
Adenosina , Adipócitos , Adipogenia , Animais , Adipócitos/metabolismo , Adipócitos/citologia , Metilação , Suínos , Adipogenia/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Diferenciação Celular/genética
7.
Sci Rep ; 14(1): 13917, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886497

RESUMO

Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Rosa , Amido Fosforilase , Estresse Fisiológico , Estresse Fisiológico/genética , Rosa/genética , Rosa/enzimologia , Rosa/metabolismo , Amido Fosforilase/genética , Amido Fosforilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Secas , Genoma de Planta , Salinidade
8.
Front Public Health ; 12: 1411489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939567

RESUMO

Introduction: Human prion disease (PrD), a group of fatal and transmissible neurodegenerative diseases, consists of Creutzfeldt-Jakob disease (CJD), kuru, fatal familial insomnia (FFI), Gerstmann-Sträussler-Scheinker disease (GSS), and variably protease-sensitive prionopathy (VPSPr). The emergence of bovine spongiform encephalopathy (BSE) in cattle and variant CJD (vCJD) has greatly threatened public health, both in humans and animals. Since the 1990's, dozens of countries and territories have conducted PrD surveillance programs. Methods: In this study, the case numbers and alternative trends of different types of PrD globally and in various countries or territories from 1993 to 2020 were collected and analyzed based on the data from the websites of the international and national PrD surveillance programs, as well as from relevant publications. Results: The total numbers of the reported PrD and sporadic CJD (sCJD) cases in 34 countries with accessible annual case numbers were 27,872 and 24,623, respectively. The top seven countries in PrD cases were the USA (n = 5,156), France (n = 3,276), Germany (n = 3,212), Italy (n = 2,995), China (n = 2,662), the UK (n = 2,521), Spain (n = 1,657), and Canada (n = 1,311). The annual PrD case numbers and mortalities, either globally or in the countries, showed an increased trend in the past 27 years. Genetic PrD cases accounted for 10.83% of all reported PrD cases; however, the trend varied largely among the different countries and territories. There have been 485 iatrogenic CJD (iCJD) cases and 232 vCJD cases reported worldwide. Discussion: The majority of the countries with PrD surveillance programs were high- and upper-middle-income countries. However, most low- and lower-middle-income countries in the world did not conduct PrD surveillance or even report PrD cases, indicating that the number of human PrD cases worldwide is markedly undervalued. Active international PrD surveillance for both humans and animals is still vital to eliminate the threat of prion disease from a public health perspective.


Assuntos
Saúde Global , Doenças Priônicas , Humanos , Doenças Priônicas/epidemiologia , Saúde Global/estatística & dados numéricos , Síndrome de Creutzfeldt-Jakob/epidemiologia , Animais , Bovinos
9.
Arch Esp Urol ; 77(4): 391-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38840282

RESUMO

OBJECTIVE: Urinary tract infection (UTI) is a common postoperative complication, so exploring its risk factors is helpful to provide a basis for clinical prevention. This study aims to analyse the risk factors for UTI after lumbar interbody fusion (LIF). METHODS: A single-centre retrospective study was conducted on the clinical data of 358 patients treated with LIF from April 2020 to April 2023. In accordance with the results of postoperative urine culture, the patients were divided into UTI group (n = 19, those with UTI after LIF) and control group (n = 332, those without UTI after LIF). Binary logistic regression analysis was carried out through collecting the medical records of the two groups to probe into the risk factors for UTI after LIF. RESULTS: After seven patients were excluded, the remaining 351 patients were included in the analysis. In this study, 19 patients (5.41%) developed postoperative UTI, whereas 332 patients (94.59%) had no UTI. Regression analysis results showed drinking (odds ratio (OR) = 16.193, 95% confidence interval (CI): 1.017-257.860) and high preoperative C-reactive protein (CRP) level (OR = 3.237, 95% CI: 1.213-8.636) as risk factors for UTI after LIF. A high professional title of main surgeon (OR = 0.095, 95% CI: 0.010-0.932) and preoperative red blood cell (RBC) count (OR = 0.001, 95% CI: 0.000-0.198) were protective factors for UTI after LIF (p < 0.05). CONCLUSIONS: This study advocated strengthening the prevention and treatment of UTI in patients who had drinking history, high preoperative CRP level and low preoperative RBC count, and received LIF based on the study results. Attention should be paid to the training of physicians with low professional title.


Assuntos
Vértebras Lombares , Complicações Pós-Operatórias , Fusão Vertebral , Infecções Urinárias , Humanos , Fusão Vertebral/efeitos adversos , Infecções Urinárias/etiologia , Infecções Urinárias/epidemiologia , Masculino , Fatores de Risco , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Vértebras Lombares/cirurgia , Idoso , Medição de Risco
10.
Environ Res ; 249: 118416, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316391

RESUMO

Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.


Assuntos
Microplásticos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Águas Residuárias/análise , Microplásticos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
11.
Environ Toxicol ; 39(3): 1107-1118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37823609

RESUMO

The Chinese medicine formula Chanling Gao (CLG) exhibits significant tumor inhibitory effects in colorectal cancer (CRC) nude mice. However, the detailed mechanisms remain elusive. CRC in situ nude mouse models were treated with CLG. Small animal magnetic resonance imaging (MRI) tracked tumor progression, and overall health metrics such as food and water intake, body weight, and survival were monitored. Posttreatment, tissues and blood were analyzed for indicators of tumor inhibition and systemic effects. Changes in vital organs were observed via stereoscope and hematoxylin-eosin staining. Immunohistochemistry quantified HIF-1α and P70S6K1 protein expression in xenografts. Double labeling was used to statistically analyze vascular endothelial growth factor (VEGF) and CD31 neovascularization. Enzyme-linked immunosorbent assay was used to determine the levels of VEGF, MMP-2, MMP-9, IL-6, and IL-10 in serum, tumors, and liver. Western blotting was used to assess the expression of the PI3K/Akt/mTOR signaling pathway-related factors TGF-ß1 and smad4 in liver tissues. CLG inhibited tumor growth, improved overall health metrics, and ameliorated abnormal blood cell counts in CRC nude mice. CLG significantly reduced tumor neovascularization and VEGF expression in tumors and blood. It also suppressed HIF-1α, EGFR, p-PI3K, Akt, p-Akt, and p-mTOR expression in tumors while enhancing PTEN oncogene expression. Systemic improvements were noted, with CLG limiting liver metastasis, reducing pro-inflammatory cytokines IL-6 and IL-10 in liver tissues, decreasing MMP-2 in blood and MMP-2 and MMP-9 in tumors, and inhibiting TGF-ß1 expression in liver tissues. CLG can enhance survival quality and inhibit tumor growth in CRC nude mice, likely through the regulation of the PI3K/Akt/mTOR signaling pathway.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Interleucina-10 , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Interleucina-6 , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
12.
Insects ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132625

RESUMO

The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.

13.
Front Public Health ; 11: 1247294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711250

RESUMO

Introduction: Fluoride is considered an environmental pollutant that seriously affects organisms and ecosystems, and its harmfulness is a perpetual public health concern. The toxic effects of fluoride include organelle damage, oxidative stress, cell cycle destruction, inflammatory factor secretion, apoptosis induction, and synaptic nerve transmission destruction. To reveal the mechanism of fluorosis-induced brain damage, we analyzed the molecular mechanism and learning and memory function of the SIRT1-mediated BDNF-TrkB signaling pathway cascade reaction in fluorosis-induced brain damage through in vivo experiments. Methods: This study constructed rat models of drinking water fluorosis using 50 mg/L, 100 mg/L, and 150 mg/L fluoride, and observed the occurrence of dental fluorosis in the rats. Subsequently, we measured the fluoride content in rat blood, urine, and bones, and measured the rat learning and memory abilities. Furthermore, oxidative stress products, inflammatory factor levels, and acetylcholinesterase (AchE) and choline acetyltransferase (ChAT) activity were detected. The pathological structural changes to the rat bones and brain tissue were observed. The SIRT1, BDNF, TrkB, and apoptotic protein levels were determined using western blotting. Results: All rats in the fluoride exposure groups exhibited dental fluorosis; decreased learning and memory abilities; and higher urinary fluoride, bone fluoride, blood fluoride, oxidative stress product, and inflammatory factor levels compared to the control group. The fluoride-exposed rat brain tissue had abnormal AchE and ChAT activity, sparsely arranged hippocampal neurons, blurred cell boundaries, significantly fewer astrocytes, and swollen cells. Furthermore, the nucleoli were absent from the fluoride-exposed rat brain tissue, which also contained folded neuron membranes, deformed mitochondria, absent cristae, vacuole formation, and pyknotic and hyperchromatic chromatin. The fluoride exposure groups had lower SIRT1, BDNF, and TrkB protein levels and higher apoptotic protein levels than the control group, which were closely related to the fluoride dose. The findings demonstrated that excessive fluoride caused brain damage and affected learning and memory abilities. Discussion: Currently, there is no effective treatment method for the tissue damage caused by fluorosis. Therefore, the effective method for preventing and treating fluorosis damage is to control fluoride intake.


Assuntos
Lesões Encefálicas , Fluorose Dentária , Animais , Ratos , Acetilcolinesterase , Encéfalo , Fator Neurotrófico Derivado do Encéfalo , Ecossistema , Fluoretos/toxicidade , Transdução de Sinais , Sirtuína 1
14.
Discov Oncol ; 14(1): 156, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639070

RESUMO

BACKGROUND: 3D cancer stem cell (CSC) cultures are widely used as in vitro tumor models. In this study, we determined the effects of enriching HCT116 tumor spheres initially cultured in serum-free medium with different concentrations of serum, focusing on the effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells (CCSCs). METHODS: CCSCs were enriched in standard serum-free medium and serum-free medium with different concentrations of serum for 1 week. The expression of CSC-associated markers in CCSCs, and the presence and relative proportion of CSCs (CD133/CD44 cell sorting) were then determined to elucidate the effect of the microserum environment on the preservation of CSC-related features. Further, the tumorigenic capacity of CCSCs was evaluated in an immunodeficiency mouse model. RESULTS: Our data indicated that a significantly greater number of spheres with a greater size range and high viability without drastic alteration in biological and structural features, which maintained self-renewal potential after sequential passages were formed after serum supplementation. Real-time analysis showed that both serum spheres and serum-free spheres displayed similar expression patterns for key stemness genes. Serum spheres showed higher expression of the CSC surface markers CD133 and CD44 than did CSCs spheres cultured in serum-free medium. Adherent cultures in complete medium could adapt to the serum-containing microenvironment faster and showed higher proliferation ability. The addition of serum induced EMT and promoted the migration and invasion of serum globular cells. Compared with serum-free cells and adherent cells, serum spheres showed higher tumor initiation ability. CONCLUSIONS: Microserum environment stimulation could be an effective strategy for reliable enrichment of intact CCSCs, and a more efficient CSC enrichment method.

15.
FASEB J ; 37(8): e23083, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402127

RESUMO

Obesity may impair muscle function and is sometimes associated with lower muscle mass. However, the internal regulatory mechanism is still unclear. Nur77 has been reported to improve obesity phenotype by regulating glucose and lipid metabolism and inhibiting the production of inflammatory factors and reactive oxygen species. Concurrently, Nur77 also plays an important role in muscle differentiation and development. We aimed to investigate the role of Nur77 in obesity-related lower muscle mass. Our in vivo and in vitro experiments illustrated that the reduction of obesity-related Nur77 accelerated the occurrence of lower muscle mass by interfering with the signaling pathways involved in the regulation of myoprotein synthesis and degradation. We further demonstrated that Nur77 activates the PI3K/Akt pathway by promoting Pten degradation, which enhances the phosphorylation of the Akt/mTOR/p70S6K pathway and inhibits the expression of skeletal muscle-specific E3 ligases (MAFbx/MuRF1). Nur77 induces Pten degradation by increasing the transcription of its specific E3 ligase Syvn1. Our study confirms that Nur77 is a key factor in ameliorating obesity-related lower muscle mass, providing a new therapeutic target and theoretical basis for the treatment of obesity-related lower muscle mass.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Obesidade/metabolismo
16.
Phytother Res ; 37(8): 3495-3507, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37125528

RESUMO

Effective amelioration of ischemia/reperfusion (I/R)-induced intestinal injury and revealing its mechanisms remain the challenges in both preclinic and clinic. Potential mechanisms of naringin in ameliorating I/R-induced intestinal injury remain unknown. Based on pre-experiments, I/R-injured rat intestine in vivo and hypoxia-reoxygenation (H/R)-injured IEC-6 cells in vitro were used to verify that naringin-alleviated I/R-induced intestinal injury was mediated via deactivating cGAS-STING signaling pathway. Naringin improved intestinal damage using hematoxylin and eosin staining and decreased alanine aminotransferase and aspartate aminotransferase contents in plasma. Naringin decreased inflammation characterized by reducing IL-6, IL-1ß, TNF-α, and IFN-ß contents in both plasma and IEC-6 cells. Naringin mitigated oxidative stress via recovering superoxide dismutase, glutathione, and malondialdehyde levels in the I/R-injured intestine. Naringin reduced the expression of apoptotic proteins, including Bax, caspase-3, and Bcl-2, and reduced terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling-positive cells both in vivo and in vitro, and decreased Hoechst 33342 signals in vitro. cGAS, STING, p-TBK1, p-IRF3, and NF-κB expressions were up-regulated both in vivo and in vitro respectively and the up-regulated indexes were reversed by naringin. Transfection of cGAS-siRNA and cGAS-cDNA significantly down-regulated and up-regulated cGAS-STING signaling-related protein expressions, respectively, and partially weakened naringin-induced amelioration on these indexes, suggesting that deactivation of cGAS-STING signaling is the crucial target for naringin-induced amelioration on I/R-injured intestine.


Assuntos
Intestinos , Traumatismo por Reperfusão , Ratos , Animais , Transdução de Sinais , Inflamação/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose
17.
J Pharm Biomed Anal ; 229: 115371, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996616

RESUMO

Enantioselective analysis of chiral drugs plays a significant role in chemistry, biology and pharmacology. Baclofen, an antispasmodic chiral drug, has been widely studied due to the obvious differences in toxicity and medical activity between enantiomers. Herein, a simple and efficient method for separation of baclofen enantiomers by capillary electrophoresis was established without complicated sample derivatization and expensive instruments. Then, the molecular modeling and density functional theory were used to simulate and investigate the chiral resolution mechanism of electrophoresis, the calculated intermolecular forces were directly presented by visualization softwares. Moreover, the theoretical and experimental electronic circular dichroism (ECD) spectra of ionized baclofen were compared, and the configuration of dominant enantiomer in the nonracemic mixture can be determined by ECD signal intensity, which was proportional to the electrophoresis peak area difference of the corresponding enantiomer excess experiments. In this way, the peak order identification and configuration quantification of baclofen enantiomers in electrophoretic separation were successfully achieved without relying on a single standard.


Assuntos
Baclofeno , Eletroforese Capilar , Baclofeno/farmacologia , Baclofeno/química , Estereoisomerismo , Eletroforese Capilar/métodos
18.
J Sep Sci ; 46(7): e2200901, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36756861

RESUMO

Enantioseparation and determination of chiral drugs are of vital importance in biochemical and pharmaceutical research due to the different biological activity, mechanism, and toxicity of individual enantiomers. As a second-generation H(1)-antagonist, cetirizine's pharmaceutical activity is mainly derived from the levocetirizine while the dextro-enantiomer is ineffective and even associated with side effects. Herein, the enantiomers of cetirizine were separated by capillary electrophoresis and identified by electronic circular dichroism. Satisfactory linear relationship was found between the circular dichroism signal at λmax and the electrophoretic peak area difference in the nonracemic mixture of enantiomers. It made possible identification and quantification of cetirizine enantiomers independent of single enantiomer standards. The method's feasibility was demonstrated on the enantiomeric excess experiments of oral drugs measured in human blank urine. Additionally, the separation and determination of cetirizine in human urine after administration were also realized by capillary electrophoresis, indicating the method was sensitive enough for pharmacokinetic study.


Assuntos
Cetirizina , Eletroforese Capilar , Humanos , Cetirizina/análise , Cetirizina/farmacocinética , Dicroísmo Circular , Padrões de Referência , Eletroforese Capilar/métodos , Estereoisomerismo
19.
J Adv Res ; 43: 13-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585103

RESUMO

INTRODUCTION: During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood. OBJECTIVES: The present study was aimed to investigate the anti-oomycete activity of secretory PR1 proteins and elaborate their underlying mechanisms. METHODS: This study was conducted in the potato-Phytophthora infestans pathosystem. After being induced by the pathogen infection, the cross-kingdom translocation of secretory PR1 was demonstrated by histochemical assays and western blot, and their targets in P. infestans were identified by yeast-two-hybrid assays, bimolecular fluorescence complementation assays, and co-immunoprecipitation assay. RESULTS: The results showed that the expression of secretory PR1-encoding genes was induced during pathogen infection, and the host could deliver PR1 into P. infestans to inhibit its vegetative growth and pathogenicity. The translocated secretory PR1 targeted the subunits of the AMPK kinase complex in P. infestans, thus affecting the AMPK-driven phosphorylation of downstream target proteins, preventing ROS homeostasis, and down-regulating the expression of RxLR effectors. CONCLUSION: The results provide novel insights into the molecular function of PR1 in protecting plants against pathogen infection, and uncover a potential target for preventing pre- and post-harvest late blight.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Phytophthora infestans , Plantas , Phytophthora infestans/genética , Interações Hospedeiro-Patógeno , Resistência à Doença/genética
20.
Anim Biotechnol ; 34(2): 268-279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34346296

RESUMO

Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.


Assuntos
MicroRNAs , RNA Longo não Codificante , Suínos , Animais , Adipogenia/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Adipócitos/fisiologia , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA