Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1219-1237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449313

RESUMO

Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Humanos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Difosfonatos/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/química , Sistemas de Liberação de Medicamentos/métodos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/terapia , Terapia de Alvo Molecular/métodos , Microambiente Tumoral/efeitos dos fármacos
2.
Angew Chem Int Ed Engl ; 62(44): e202310395, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651468

RESUMO

Chimeric Antigen Receptor (CAR) T cell immunotherapy is revolutionizing treatment for patients suffering from B-cell lymphoma (BL). However, the current method of CAR T cell production is complicated and expensive, requiring collection of patient blood to enrich the T cell population, ex vivo engineering/activation, and quality assessment before the patient can receive the treatment. Herein we leverage Spleen Selective ORgan Targeted (SORT) Lipid Nanoparticles (LNPs) to produce CAR T cells in situ and bypass the extensive and laborious process currently used. Optimized Spleen SORT LNPs containing 10 % 18 : 1 PA transfected CD3+, CD8+, and CD4+ T cells in wild-type mice. Spleen SORT LNPs delivered Cre recombinase mRNA and CAR encoding mRNA to T cells in reporter mice and in a lymphoreplete B cell lymphoma model (respectively) after intravenous injection without the need for active targeting ligands. Moreover, in situ CAR T cells increased the overall survival of mice with a less aggressive form of B cell lymphoma. In addition, in situ transfected CAR T cells reduced tumor metastasis to the liver by increasing tumor infiltrating lymphocytes. Overall, these results offer a promising alternative method for CAR T cell production with pre-clinical potential to treat hematological malignancies.


Assuntos
Linfoma de Células B , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Baço , Linhagem Celular Tumoral , Linfoma de Células B/tratamento farmacológico , RNA Mensageiro
3.
J Am Chem Soc ; 144(51): 23668-23676, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511618

RESUMO

The second near-infrared (NIR-II, 1000-1700 nm) fluorescent probes have significant advantages over visible or NIR-I (600-900 nm) imaging for both depth of penetration and level of resolution. Since the blood-brain barrier (BBB) prevents most molecules from entering the central nervous system, NIR-II dyes with large molecular frameworks have limited applications for brain imaging. In this work, we developed a series of boron difluoride (BF2) formazanate NIR-II dyes, which had tunable photophysical properties, ultrahigh photostability, excellent biological stability, and strong brightness. Modulation of the aniline moiety of BF2 formazanate dyes significantly enhances their abilities to cross the BBB for noninvasive brain imaging. Furthermore, the intact mouse brain imaging and dynamic dye diffusion across the BBB were monitored using these BF2 formazanate dyes in the NIR-II region. In murine glioblastoma models, these dyes can differentiate tumors from normal brain tissues. We anticipate that this new type of small molecule will find potential applications in creating probes and drugs relevant to theranostic for brain pathologies.


Assuntos
Barreira Hematoencefálica , Neoplasias , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes , Imagem Óptica/métodos , Neuroimagem
4.
Nat Commun ; 13(1): 5434, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114189

RESUMO

Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.


Assuntos
Código Genético , Trombina , Aminoácidos/química , Proteínas/metabolismo , Trombina/genética , Tirosina/metabolismo
5.
ACS Cent Sci ; 8(3): 312-321, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35355817

RESUMO

Despite the rapid evolution of therapeutic antibodies, their clinical efficacy in the treatment of bone tumors is hampered due to the inadequate pharmacokinetics and poor bone tissue accessibility of these large macromolecules. Here, we show that engineering therapeutic antibodies with bone-homing peptide sequences dramatically enhances their concentrations in the bone metastatic niche, resulting in significantly reduced survival and progression of breast cancer bone metastases. To enhance the bone tumor-targeting ability of engineered antibodies, we introduced varying numbers of bone-homing peptides into permissive sites of the anti-HER2 antibody, trastuzumab. Compared to the unmodified antibody, the engineered antibodies have similar pharmacokinetics and in vitro cytotoxic activity, but exhibit improved bone tumor distribution in vivo. Accordingly, in xenograft models of breast cancer metastasis to bone sites, engineered antibodies with enhanced bone specificity exhibit increased inhibition of both initial bone metastases and secondary multiorgan metastases. Furthermore, this engineering strategy is also applied to prepare bone-targeting antibody-drug conjugates with enhanced therapeutic efficacy. These results demonstrate that adding bone-specific targeting to antibody therapy results in robust bone tumor delivery efficacy. This provides a powerful strategy to overcome the poor accessibility of antibodies to the bone tumors and the consequential resistance to the therapy.

6.
Theranostics ; 11(18): 9107-9117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522229

RESUMO

Rationale: Therapeutic antibody conjugates allow for the specific delivery of cytotoxic agents or immune cells to tumors, thus enhancing the antitumor activity of these agents and minimizing adverse systemic effects. Most current antibody conjugates are prepared by nonspecific modification of antibody cysteine or lysine residues, inevitably resulting in the generation of heterogeneous conjugates with limited therapeutic efficacies. Traditional strategies to prepare homogeneous antibody conjugates require antibody engineering or chemical/enzymatic treatments, processes that often affect antibody folding and stability, as well as yield and cost. Developing a simple and cost-effective way to precisely couple functional payloads to native antibodies is of great importance. Methods: We describe a simple proximity-induced antibody conjugation method (pClick) that enables the synthesis of homogeneous antibody conjugates from native antibodies without requiring additional antibody engineering or post-synthesis treatments. A proximity-activated crosslinker is introduced into a chemically synthesized affinity peptide modified with a bioorthogonal handle. Upon binding to a specific antibody site, the affinity peptide covalently attaches to the antibody via spontaneous crosslinking, yielding an antibody molecule ready for bioorthogonal conjugation with payloads. Results: We have prepared well-defined antibody-drug conjugates and bispecific small molecule-antibody conjugates using pClick technology. The resulting conjugates exhibit excellent in vitro cytotoxic activity against cancer cells and, in the case of bispecific conjugates, superb antitumor activity in mouse xenograft models. Conclusions: Our pClick technology enables efficient, simple, and site-specific conjugation of various moieties to the existing native antibodies. This technology does not require antibody engineering or additional UV/chemical/enzymatic treatments, therefore providing a general, convenient strategy for developing novel antibody conjugates.


Assuntos
Química Click/métodos , Imunoconjugados/química , Imunotoxinas/química , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos , Antineoplásicos/farmacologia , Linhagem Celular , Humanos , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/tratamento farmacológico
7.
Sci Adv ; 7(26)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34162538

RESUMO

Antibody-based therapies have proved to be of great value in cancer treatment. Despite the clinical success of these biopharmaceuticals, reaching targets in the bone microenvironment has proved to be difficult due to the relatively low vascularization of bone tissue and the presence of physical barriers. Here, we have used an innovative bone-targeting (BonTarg) technology to generate a first-in-class bone-targeting antibody. Our strategy involves the use of pClick antibody conjugation technology to chemically couple the bone-targeting moiety bisphosphonate to therapeutic antibodies. Bisphosphonate modification of these antibodies results in the delivery of higher conjugate concentrations to the bone metastatic niche, relative to other tissues. In xenograft mice models, this strategy provides enhanced inhibition of bone metastases and multiorgan secondary metastases that arise from bone lesions. Specific delivery of therapeutic antibodies to the bone, therefore, represents a promising strategy for the treatment of bone metastatic cancers and other bone diseases.


Assuntos
Neoplasias Ósseas , Animais , Anticorpos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos , Difosfonatos/uso terapêutico , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica/patologia , Microambiente Tumoral
8.
Chem Sci ; 12(47): 15572-15580, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35003586

RESUMO

Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.

9.
Curr Med Chem ; 28(9): 1775-1795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32520674

RESUMO

BACKGROUND: Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS: We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS: In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION: Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular , Humanos , Neoplasias/tratamento farmacológico , Proteínas Nucleares , Fatores de Transcrição
10.
Chem ; 6(10): 2717-2727, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33102928

RESUMO

While most organisms utilize 20 canonical amino acid building blocks for protein synthesis, adding additional candidates to the amino acid repertoire can greatly facilitate the investigation and manipulation of protein structures and functions. In this study, we report the generation of completely autonomous organisms with a 21st ncAA, 5-hydroxytryptophan (5HTP). Like 20 canonical amino acids, 5-hydroxytryptophan can be biosynthesized in vivo from simple carbon sources and is subsequently incorporated into proteins in response to the amber stop codon. Using this unnatural organism, we have prepared a single-chain immunoglobulin variable fragment conjugated with a fluorophore and demonstrated the utility of these autonomous cells to monitor oxidative stress. Creation of this and other cells containing the 21st amino acid will provide an opportunity to generate proteins and organisms with novel activities, as well as to determine the evolutionary consequences of using additional amino acid buildings.

11.
Chin Med ; 14: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936939

RESUMO

Biofilm is a natural form of bacterial growth ubiquitously in environmental niches. The biofilm formation results in increased resistance to negative environmental influences including resistance to antibiotics and antimicrobial agents. Quorum sensing (QS) is cell-to-cell communication mechanism, which plays an important role in biofilm development and balances the environment when the bacteria density becomes high. Due to the prominent points of biofilms implicated in infectious disease and the spread of multi-drug resistance, it is urgent to discover new antibacterial agents that can regulate biofilm formation and development. Accumulated evidences demonstrated that natural products from plants had antimicrobial and chemo-preventive properties in modulation of biofilm formation in the last two decades. This review will summarize recent studies on the discovery of natural anti-biofilm agents from plants with clear-cut mechanisms or identified molecular addresses, as well as some herbs with unknown mechanisms or unidentified bioactive ingredients. We also focus on the progression of techniques on the extraction and identification of natural anti-biofilm substances. Besides, anti-biofilm therapeutics undergoing clinical trials are discussed. These newly discovered natural anti-biofilm agents are promising candidates which could provide novel strategies for biofilm-associated infections.

12.
Chem Sci ; 6(7): 4284-4290, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218197

RESUMO

A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.

13.
Bioorg Med Chem ; 21(17): 5246-60, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23838381

RESUMO

A novel series of N(1)-(3-fluoro-4-(6,7-disubstituted-quinolin-4-yloxy)phenyl)-N(4)-arylidenesemicarbazide derivatives were synthesized and evaluated for their c-Met kinase inhibition and cytotoxicity against A549, HT-29, MKN-45 and MDA-MB-231 cancer cell lines in vitro. Several potent compounds were further evaluated against three other cancer cell lines (U87MG, NCI-H460 and SMMC7721). Most of compounds tested exhibited moderate to excellent activity. The studies of SARs identified the most promising compound 28 (c-Met IC50=1.4nM) as a c-Met kinase inhibitor. In this study, a promising compound 28 was identified, which displayed 2.1-, 3.3-, 48.4- and 3.6-fold increase against A549, HT-29, U87MG and NCI-H460 cell lines, respectively, compared with that of Foretinib.


Assuntos
Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/química , Semicarbazidas/síntese química , Semicarbazonas/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/síntese química , Quinolinas/toxicidade , Semicarbazidas/química , Semicarbazidas/toxicidade , Semicarbazonas/síntese química , Semicarbazonas/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...