Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38776549

RESUMO

High-temperature polymers are attractive for applications in extreme temperatures, where they maintain their mechanical flexibility and electrical insulating properties. However, their heat dissipation capability is limited due to their intrinsically low thermal conductivities. Hexagonal boron nitride (hBN) is a chemically inert, thermally stable, and electrically insulative compound with a high thermal conductivity, making it an ideal candidate as a filler within a high-temperature polymer matrix to increase the thermal conductivity. This study evaluates the effect of filler size and dispersion on thermal conductivity by producing homogeneous composite samples using a combination of solvent mixing and resonant acoustic mixing (RAM). We carefully characterized our samples, including the spread of the size distribution, and observed that the smaller sized hBN centered around 5 µm was able to integrate more seamlessly into the polytetrafluoroethylene (PTFE) matrix with particle size in the 15 µm range and hence outperformed 30 µm, in contrast to the conventional wisdom, which asserts that larger fillers universally perform better than smaller ones. Our thermal conductivity of hBN/PTFE composites at 30 wt % is 2× higher than the literature values. Notably, we reached the record-high value of 3.5 W/m K at 40 wt % with an onset of percolation at 20 wt %, attributed to optimized hBN dispersion that facilitates the formation of thermal percolation. Our findings provide general guidelines to enhance the thermal conductivity of polymer composites for thermal management, ranging from power transmission to microelectronics cooling.

2.
Adv Mater ; 35(47): e2304624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707242

RESUMO

Understanding the emergent electronic structure in twisted atomically thin layers has led to the exciting field of twistronics. However, practical applications of such systems are challenging since the specific angular correlations between the layers must be precisely controlled and the layers have to be single crystalline with uniform atomic ordering. Here, an alternative, simple, and scalable approach is suggested, where nanocrystallinetwo-dimensional (2D) film on 3D substrates yields twisted-interface-dependent properties. Ultrawide-bandgap hexagonal boron nitride (h-BN) thin films are directly grown on high in-plane lattice mismatched wide-bandgap silicon carbide (4H-SiC) substrates to explore the twist-dependent structure-property correlations. Concurrently, nanocrystalline h-BN thin film shows strong non-linear second-harmonic generation and ultra-low cross-plane thermal conductivity at room temperature, which are attributed to the twisted domain edges between van der Waals stacked nanocrystals with random in-plane orientations. First-principles calculations based on time-dependent density functional theory manifest strong even-order optical nonlinearity in twisted h-BN layers. This work unveils that directly deposited 2D nanocrystalline thin film on 3D substrates could provide easily accessible twist-interfaces, therefore enabling a simple and scalable approach to utilize the 2D-twistronics integrated in 3D material devices for next-generation nanotechnology.

3.
ACS Nano ; 17(16): 15222-15230, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552587

RESUMO

Covalent-organic frameworks (COFs) are a highly promising class of materials that can provide an excellent platform for thermal management applications. In this Perspective, we first review previous works on the thermal conductivities of COFs. Then we share our insights on achieving high, low, and switchable thermal conductivities of future COFs. To obtain the desired thermal conductivity, a comprehensive understanding of their thermal transport mechanisms is necessary but lacking. We discuss current limitations in atomistic simulations, synthesis, and thermal conductivity measurements of COFs and share potential pathways to overcoming these challenges. We hope to stimulate collective, interdisciplinary efforts to study the thermal conductivity of COFs and enable their wide range of thermal applications.

4.
Nano Lett ; 23(15): 6927-6936, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489836

RESUMO

Boron nitride (BN) is an exceptional material, and among its polymorphs, two-dimensional (2D) hexagonal and three-dimensional (3D) cubic BN (h-BN and c-BN) phases are most common. The phase stability regimes of these BN phases are still under debate, and phase transformations of h-BN/c-BN remain a topic of interest. Here, we investigate the phase stability of 2D/3D h-BN/c-BN nanocomposites and show that the coexistence of two phases can lead to strong nonlinear optical properties and low thermal conductivity at room temperature. Furthermore, spark-plasma sintering of the nanocomposite shows complete phase transformation to 2D h-BN with improved crystalline quality, where 3D c-BN possibly governs the nucleation and growth kinetics. Our demonstration might be insightful in phase engineering of BN polymorph-based nanocomposites with desirable properties for optoelectronics and thermal energy management applications.

5.
ACS Macro Lett ; 11(1): 116-120, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574791

RESUMO

Molecularly confined polymer fillers in nanopores were found to give superior mechanical properties of polymer nanocomposites. In this work, we study the thermal conductivity of such nanocomposites and unveil the effect of polymer confinement on thermal conductivity. Using the time-domain thermoreflectance method, we measure the cross-plane thermal conductivity of polymer nanocomposites that consist of polystyrene fillers confined within a nanoporous organosilicate matrix. Compared to unconfined bulk polystyrene fillers, we find that pore-confined polystyrene fillers enhance the thermal conductivity of the polymer nanocomposites. This enhancement is attributed to the better aligned and less entangled chains in the confined phase, where chain-chain phonon scatterings are reduced. Our work provides essential insights into the thermal conductivity of polymer nanocomposites for multifunctional thermal and mechanical applications.

6.
ACS Appl Mater Interfaces ; 14(12): 14579-14587, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311286

RESUMO

Thermal percolation in polymer nanocomposites─the rapid increase in thermal transport due to the formation of networks among fillers─is the subject of great interest in thermal management ranging from general utility in multifunctional nanocomposites to high-conductivity applications such as thermal interface materials. However, It remains a challenging subject encompassing both experimental and modeling hurdles. Successful reports of thermal percolation are exclusively found in high-aspect-ratio, conductive fillers such as graphene, albeit at filler loadings significantly higher than the electrical percolation threshold. This anomaly was attributed to the lower filler-matrix thermal conductivity contrast ratio kf/km ∼104 compared to electrical conductivity ∼1012-1016. In a randomly dispersed composite, the effect of a low contrast ratio is further accentuated by uncertainties in the morphology of the percolating network and presence of other phases such as disconnected aggregates and colloidal dispersions. Thus, the general properties of percolating networks are convoluted as they lack a defined structure. In contrast, a prototypical system with controllable nanofiller placement enables the elucidation of structure-property relations such as filler size, loading, and assembly. Using self-assembled nanocomposites with a controlled 1,2,3-dimension nanoparticle (NP) arrangement, we demonstrate that thermal percolation can be achieved in spite of using spherical, nonconductive fillers (kf/km ∼60) at a low volume fraction (9 vol %). We observe that the effects of volume fraction, interfacial thermal resistance, and filler conductivity on thermal conductivity depart from effective medium approximations. Most notably, contrast ratio plays a minor role in thermal percolation above kf/km ∼60─a common range for semiconducting nanoparticles/polymer ratios. Our findings bring new perspectives and insights to thermal percolation in nanocomposites, where the limits in contrast ratio, interfacial thermal conductance, and filler size are established.

7.
J Phys Chem Lett ; 12(21): 5091-5098, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34028281

RESUMO

Highlighted by the discovery of high-temperature superconductivity, strongly correlated oxides with highly distorted perovskite structures serve as intriguing model systems for pursuing emerging materials physics and testing technological concepts. While 3d correlated oxides with a distorted perovskite structure are not uncommon, their 4d counterparts are unfortunately rare. In this work, we report the tuning of the electrical and optical properties of a quasi-2D perovskite niobate CsBiNb2O7 via hydrogenation. It is observed that hydrogenation induces drastic changes of lattice dynamics, optical transmission, and conductance. It is suggested that changing the orbital occupancy of Nb d orbitals could trigger the on-site Coulomb interaction in the NbO6 octahedron. The observed hydrogen doping-induced electrical plasticity is implemented for simulating neural synaptic activity. Our finding sheds light on the role of hydrogen in 4d transition metal oxides and suggests a new avenue for the design and development of novel electronic phases.

8.
Nano Lett ; 21(9): 3708-3714, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938755

RESUMO

Two-dimensional (2D) hybrid organic-inorganic perovskites consisting of alternating organic and inorganic layers are a new class of layered structures. They have attracted increasing interest for photovoltaic, optoelectronic, and thermoelectric applications, where knowing their thermal transport properties is critical. We carry out both experimental and computational studies on thermal transport properties of 2D butylammonium lead iodide crystals and find their thermal conductivity is ultralow (below 0.3 W m-1 K-1) with very weak anisotropy (around 1.5) among layered crystals. Further analysis reveals that the unique structure with the preferential alignment of organic chains and complicated energy landscape leads to moderately smaller phonon lifetimes in the out-of-plane direction and comparable phonon group velocities in in-plane and out-of-plane directions. These new findings may guide the future design of novel hybrid materials with desired thermal conductivity for various applications.

9.
Adv Mater ; 32(36): e2002702, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715534

RESUMO

Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.

10.
Phys Rev Lett ; 123(15): 155901, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702321

RESUMO

In this Letter, we show the phonon dispersion of (CH_{3}NH_{3})_{3}Bi_{2}I_{9} single crystals at 300 K measured by inelastic x-ray scattering. The frequencies of acoustic phonons are among the lowest of crystals. Nanoindentation measurements verified that these crystals are very compliant and considerably soft. The frequency overlap between acoustic and optical phonons results in strong acoustic-optical scattering. All these features lead to an ultralow thermal conductivity. The fundamental knowledge obtained from this study will accelerate the design of novel hybrid materials for energy applications.

11.
ACS Nano ; 13(4): 3750-3753, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30973217

RESUMO

Solid-state thermoelectrics are of great interest because they directly convert between thermal and electrical energy. However, wider application of thermoelectrics is dependent upon improving their performance. Anderson localization of charge carriers has been generally perceived as detrimental to thermoelectrics, but in their paper in this issue of ACS Nano, Lee et al. propose a concept of using selective charge Anderson localization for synergetic enhancement of thermoelectric performance. To facilitate discussions and research on Anderson localization to improve thermoelectrics, this Perspective shares potential directions to explore the viability of using Anderson localization or related strategies to drive thermoelectric performance.

12.
J Phys Chem Lett ; 10(1): 1-6, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554507

RESUMO

Hybrid organic-inorganic perovskites were reported to have ultralow thermal conductivity in recent studies. In this Letter, we report the first experimental phonon dispersion and lifetimes of tetragonal CH3NH3PbI3 single crystals at both 200 and 300 K by high-energy resolution inelastic X-ray scattering, which enables a thorough understanding of the underlying mechanisms for the ultralow thermal conductivity. Notably, we observed unusual and significant phonon dips along the [100] and [110] directions at both temperatures. The ultralow thermal conductivity can be attributed to small group velocities due to ultrasoft acoustic modes and short phonon lifetimes originating from the strong acoustic-optical coupling. We further provided the structural origins for these peculiar phonon features. Moreover, our results and interpretation are consistent with the reported temperature-dependent trend for thermal conductivity of CH3NH3PbI3. Our work offers critical guidelines for accelerating the design and discovery of novel hybrid materials for energy applications including photovoltaics and thermoelectrics.

13.
Nanoscale ; 10(29): 13924-13929, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30009298

RESUMO

Two-dimensional (2D) polymers are organic analogues of graphene. Compared to graphene, 2D polymers offer a higher degree of tunability in regards to structure, topology, and physical properties. The thermal transport properties of 2D polymers play a crucial role in their applications, yet remain largely unexplored. Using the equilibrium molecular dynamics method, we study the in-plane thermal conductivity of dubbed porous graphene that is comprised of π-conjugated phenyl rings. In contrast to the conventional notion that π-conjugation leads to high thermal conductivity, we demonstrate, for the first time, that π-conjugated 2D polymers can have either high or low thermal conductivity depending on their porosity and structural orientation. The underlying mechanisms that govern thermal conductivity were illustrated through phonon dispersion. The ability to achieve two orders of magnitude variance in thermal conductivity by altering porosity opens up exciting opportunities to tune the thermal transport properties of 2D polymers for a diverse array of applications.

14.
Sci Total Environ ; 635: 1215-1224, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710576

RESUMO

The thermal energy represents a significant portion of energy potential in municipal wastewater and may be recovered as electricity by a thermoelectric generator (TEG). Converting heat to all-purpose electricity by TEG has been demonstrated with large heat gradients, but its application in waste heat recovery from wastewater has not been well evaluated. Herein, a bench-scale Bi2Te3-based waste heat recovery system was employed to generate electricity from a low temperature gradient through a combination of experiments and mathematical modeling. With an external resistance of 7.8â€¯Ω and a water (hot side) flow rate of 75 mL min-1, a maximum normalized energy recovery of 4.5 × 10-4 kWh m-3 was achieved under a 2.8 °C temperature gradient (ΔT). Model simulation indicated a boost in both power output and energy conversion efficiency from 0.76 mW and 0.13% at ΔT = 2.8 °C to 61.83 mW and 1.15% at ΔT = 25 °C. Based on the data of two-year water/air temperature obtained from the Christiansburg Wastewater Treatment Plant, an estimated energy generation of 1094 to 70,986 kWh could be expected annually with a saving of $163 to $6076. Those results have revealed a potential for TEG-centered direct electricity generation from low-grade heat towards enhanced resource recovery from wastewater and encouraged further exploration of this approach.

15.
ACS Macro Lett ; 7(1): 53-58, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35610916

RESUMO

Thermal switches are of great importance to thermal management in a wide variety of applications. However, traditional thermal switches suffer from being large and having slow transition rates. To overcome these limitations, we took advantage of abrupt second-order phase transitions in thermoresponsive polymer aqueous solutions to enable fast thermal switching. While thermoresponsive polymers have been widely studied for biomedical applications, their thermal switching capability has not been studied. In this work, we used poly(N-isopropylacrylamide) (PNIPAM) as a model system to demonstrate abrupt thermal conductivity changes of thermoresponsive polymer aqueous solutions across their transition temperatures by using a powerful approach, the transient thermal grating technique, which has high sensitivity. We observed a thermal switching ratio up to 1.15 in dilute PNIPAM aqueous solutions (up to 0.025 g/mL) across the transition. This work may provide new opportunities to engineer thermal switches using second-order phase transitions of thermoresponsive polymer aqueous solutions or abrupt higher-order phase transitions in general.

16.
Nano Lett ; 18(1): 43-48, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29215898

RESUMO

Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

17.
Nanoscale ; 9(36): 13477-13484, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28861576

RESUMO

Graphene has excellent mechanical, thermal and electrical properties. However, there are limitations in utilizing monolayers of graphene for mechanical engineering applications due to its atomic thickness and lack of bending rigidity. Synthesizing graphene aerogels or foams is one approach to utilize graphene in three-dimensional bulk forms. Recently, graphene with a gyroidal geometry has been proposed. A gyroid is a triply periodic minimal surface that allows graphene sheets to form a three-dimensional structure. Its light weight and high mechanical strength suggests that the graphene that constitutes this geometry can synergistically contribute to the mechanics of the bulk material. However, it is not clear whether gyroid graphene can preserve the high thermal conductivity of pristine graphene sheets. Here, we investigate the thermal conductivities of gyroid graphene with different porosities by using full-atom molecular dynamics simulations. In contrast to its excellent mechanical properties, we find that the thermal conductivity of gyroid graphene is more than 300 times lower than that of pristine graphene, with a bulk density of only about one-third of that of graphene. We derive a scaling law showing that the thermal conductivity does not vary much with different bulk densities, which contrasts the behavior of conventional porous materials. Our analysis shows that the poor thermal conductivity of gyroid graphene can be attributed to defects and curvatures of graphene, which increase with the density, resulting in the reduction of a phonon mean free path by phonon scattering. Our study shows that three-dimensional porous graphene has potential that may be utilized in designing new lightweight structural materials with low and density-insensitive thermal properties and superior mechanical strength.

18.
Sci Rep ; 6: 36875, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830737

RESUMO

The wide bandgap semiconductor, ZnO, has gained interest recently as a promising option for use in power electronics such as thermoelectric and piezoelectric generators, as well as optoelectronic devices. Though much work has been done to improve its electronic properties, relatively little is known of its thermal transport properties with large variations in measured thermal conductivity. In this study, we examine the effects of a Hubbard corrected energy functional on the lattice thermal conductivity of wurtzite ZnO calculated using density functional theory and an iterative solution to the Boltzmann transport equation. Showing good agreement with existing experimental measurements, and with a detailed analysis of the mode-dependence and phonon properties, the results from this study highlight the importance of the Hubbard correction in calculations of thermal transport properties of materials with strongly correlated electron systems.

19.
J Phys Condens Matter ; 27(37): 375403, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26328745

RESUMO

PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.


Assuntos
Ligas/química , Fônons , Difração de Raios X , Chumbo/química , Teoria Quântica , Selênio/química , Telúrio/química
20.
Nat Commun ; 5: 3525, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24770354

RESUMO

Understanding the lattice dynamics and low thermal conductivities of IV-VI, V2-VI3 and V materials is critical to the development of better thermoelectric and phase-change materials. Here we provide a link between chemical bonding and low thermal conductivity. Our first-principles calculations reveal that long-ranged interaction along the 〈100〉 direction of the rocksalt structure exist in lead chalcogenides, SnTe, Bi2Te3, Bi and Sb due to the resonant bonding that is common to all of them. This long-ranged interaction in lead chalcogenides and SnTe cause optical phonon softening, strong anharmonic scattering and large phase space for three-phonon scattering processes, which explain why rocksalt IV-VI compounds have much lower thermal conductivities than zincblende III-V compounds. The new insights on the relationship between resonant bonding and low thermal conductivity will help in the development of better thermoelectric and phase change materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...