Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(21): e2201212, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047614

RESUMO

Nerve-related fluorophores generally locate in the visible or near-infrared region with shallow penetration depth and easy uptake by surrounding tissues. Prolonging the optical window promotes resolution by minimizing photoscattering and eliminating autofluorescence for NIR-II (second near infrared; 1000-1700 nm) and photoacoustic bioimaging. In addition, combination of the two could help in colocalization of targets at the 3D level. Catheter-based renal sympathetic denervation (RDN), an alternative treatment recently finishing its clinical evaluation for treating resistant hypertension, is highly dependent on experience and in urgent demand for in vivo guidance in locating the nerve over the renal artery. Here, an NIR-II and photoacoustic bioimaging system based on a dye-modified anti-tyrosine-hydroxylase antibody (TH-ICGM) to illustrate the peritoneal sympathetic nerve-related region are combined. With high resolution (0.15 mm) in NIR-II region for both absorbance (λex = 925 nm) and fluorescence (bioimaging in λem ≥ 1300 nm), TH-ICGM succeeds in providing 3D coordinates of procedure position with a precision in 0.1 mm. As the first nerve-related NIR-II immunoprobe, TH-ICGM has great clinical potential as assistance for nerve-related interventions.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Imagem Óptica/métodos , Rim , Denervação
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485243

RESUMO

The continuous emergence of novel SARS-CoV-2 variants poses new challenges to the fight against the COVID-19 pandemic. The newly emerging Omicron strain caused serious immune escape and raised unprecedented concern all over the world. The development of antibody targeting conserved and universal epitope is urgently needed. A subset neutralizing antibody(nAbs) against COVID-19 from convalescent patients were isolated in our previous study. Here in this study, we investigated the accommodation of these nAbs to SARS-CoV-2 variants of concerns (VOCs), revealing that IgG 553-49 neutralizes pseudovirus of SARS-CoV-2 Omicron variant. In addition, we determined the cryo-EM structure of SARS-CoV-2 spike complexed with three antibodies targeting different epitopes, including 553-49, 553-15 and 553-60. Notably, 553-49 targets a novel conserved epitope and neutralizes virus by disassembling spike trimers. 553-15, an antibody that neutralizes all the other VOCs except omicron, cross-links two spike trimers to form trimer dimer, demonstrating that 553-15 neutralizes virus by steric hindrance and virion aggregation. These findings suggest the potential to develop 49 and other antibody targeting this highly conserved epitope as promising cocktail therapeutics reagent for COVID-19. ImportanceThe newly emergence of Omicron strain caused higher immune escape, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. In this study, we identified a SARS-CoV-2 Omicron neutralizing antibody 553-49, which neutralizes Omicron variant by targeting a completely conserved novel epitope. Besides, we revealed that IgG 553-15 neutralizes SARS-CoV-2 by crosslinking virions and 553-60 functions by blocking receptor binding. Comparison of different RBD epitopes revealed that the epitope of 553-49 is hidden in the S trimer and keeps high conservation during SARS-CoV-2 evolution, making 553-49 a promising therapeutics reagent to fight against the emerging Omicron and future variant of SARS-CoV-2.

3.
Acta Pharmaceutica Sinica B ; (6): 1591-1623, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929271

RESUMO

The COVID-19 pandemic caused by the novel SARS-CoV-2 virus has caused havoc across the entire world. Even though several COVID-19 vaccines are currently in distribution worldwide, with others in the pipeline, treatment modalities lag behind. Accordingly, researchers have been working hard to understand the nature of the virus, its mutant strains, and the pathogenesis of the disease in order to uncover possible drug targets and effective therapeutic agents. As the research continues, we now know the genome structure, epidemiological and clinical features, and pathogenic mechanism of SARS-CoV-2. Here, we summarized the potential therapeutic targets involved in the life cycle of the virus. On the basis of these targets, small-molecule prophylactic and therapeutic agents have been or are being developed for prevention and treatment of SARS-CoV-2 infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474535

RESUMO

The effectiveness of SARS-CoV-2 vaccines and therapeutic antibodies has been limited by the continuous emergence of viral variants, and by the restricted diffusion of antibodies from circulation into the sites of respiratory virus infection. Here, we report the identification of two highly conserved regions on Omicron variant RBD recognized by broadly neutralizing antibodies. Based on this finding, we generated a bispecific single-domain antibody that was able to simultaneously and synergistically bind these two regions on a single Omicron variant RBD as revealed by Cryo-EM structures. This inhalable antibody exhibited exquisite neutralization breadth and therapeutic efficacy in mouse models of SARS-CoV-2 infections. The structures also deciphered an uncommon cryptic epitope within the spike trimeric interface that may have implications for the design of broadly protective SARS-CoV-2 vaccines and therapeutics.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440083

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446 -S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, F61 and H121 exhibited efficient neutralizing activity against variants B.1.1.7 and B.1.351, those showed immune escape. Efficient neutralization of F61 and H121 against multiple mutations within RBD revealed a broad neutralizing activity against SARS-CoV-2 variants, which mitigated the risk of viral escape. Our findings defined the basis of therapeutic cocktails of F61 and H121 with broad neutralization and delivered a guideline for the current and future vaccine design, therapeutic antibody development, and antigen diagnosis of SARS-CoV-2 and its novel variants.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20209114

RESUMO

Antibody-dependent enhancement (ADE) has been reported in several virus infections including dengue fever virus, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus infection. To study whether ADE is involved in COVID-19 infections, in vitro pseudotyped SARS-CoV-2 entry into Raji cells, K562 cells, and primary B cells mediated by plasma from recovered COVID-19 patients were employed as models. The enhancement of SARS-CoV-2 entry into cells was more commonly detected in plasma from severely-affected elderly patients with high titers of SARS-CoV-2 spike protein-specific antibodies. Cellular entry was mediated via the engagement of Fc{gamma}RII receptor through virus-cell membrane fusion, but not by endocytosis. Peptide array scanning analyses showed that antibodies which promote SARS-CoV-2 infection targeted the variable regions of the RBD domain. To further characterize the association between the spike-specific antibody and ADE, an RBD-specific monoclonal antibody (7F3) was isolated from a recovered patient, which potently inhibited SARS-Cov-2 infection of ACE-2 expressing cells and also mediated ADE in Raji cells. Site-directed mutagenesis the spike RBD domain reduced the neutralization activity of 7F3, but did not abolish its binding to the RBD domain. Structural analysis using cryo-electron microscopy (Cryo-EM) revealed that 7F3 binds to spike proteins at a shift-angled pattern with one "up" and two "down" RBDs, resulting in partial overlapping with the receptor binding motif (RBM), while a neutralizing monoclonal antibody that lacked ADE activity binds to spike proteins with three "up" RBDs, resulting in complete overlapping with RBM. Our results revealed that ADE mediated by SARS-CoV-2 spike-specific antibodies could result from binding to the receptor in slightly different pattern from antibodies mediating neutralizations. Studies on ADE using antibodies from recovered patients via cell biology and structural biology technology could be of use for developing novel therapeutic and preventive measures for control of COVID-19 infection.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20161869

RESUMO

Pandemic SARS-CoV-2 has infected over 10 million people and caused over 500,000 mortalities. Vaccine development is in urgent need to stop the pandemic. Despite great progresses on SARS-CoV-2 vaccine development, the efficacy of the vaccines remains to be determined. Deciphering the interactions of the viral epitopes with their elicited neutralizing antibodies in the convalescent COVID-19 population inspires the vaccine development. In this study, we devised a peptide array composed of 20-mer overlapped peptides of spike (S), membrane (M) and envelope (E) proteins, and performed a screening with 120 COVID-19 convalescent serums and 24 non-COVID-19 serums. We identified five SARS-CoV-2-specific dominant epitopes that reacted with above 40% COVID-19 convalescent serums. Epitopes in the receptor-binding domain (RBD) of S ill reacted with the convalescent serums. Of note, two peptides non-specifically interacted with most of the non-COVID-19 serums. Neutralization assay indicated that only five serums completely blocked viral infection at the dilution of 1:200. By using a peptide-compete neutralizing assay, we found that three dominant epitopes partially competed the neutralization activity of several convalescent serums, suggesting antibodies elicited by these epitopes played an important role in neutralizing viral infection. The epitopes we identified in this study may serve as vaccine candidates to elicit neutralizing antibodies in most vaccinated people or specific antigens for SARS-CoV-2 diagnosis.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-093054

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for which a vaccine is urgently needed to control its spreading. To facilitate the representation of a native-like immunogen without being infectious, here, we reported a SARS-CoV-2 vaccine candidate (designated ShaCoVacc) by incorporating spike-encoding mRNA inside and decorating spike protein on the surface of the virus simulating particles (VSPs) derived from lentiviral particles. We characterized the mRNA copy number, glycosylation status, transduction efficiency, and innate immune property of the new vaccine platform. Importantly, we showed the ShaCoVacc induced strong spike-specific humoral immune responses and potent neutralizing activities by a single injection. Additionally, we disclosed the epitopes of spike-specific antibodies using peptide microarray and revealed epitopes susceptible to specific neutralizing antibodies. These results support further development of ShaCoVacc as a candidate vaccine for COVID-19 and VSP may serve as a new vaccine platform for emerging infectious diseases.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-015990

RESUMO

The COVID-19 pandemic is spreading rapidly, highlighting the urgent need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We describe here the development of a phage-displayed single-domain antibody library by grafting naive CDRs into framework regions of an identified human germline IGHV allele. This enabled the isolation of high-affinity single-domain antibodies of fully human origin. The panning using SARS-CoV-2 RBD and S1 as antigens resulted in the identification of antibodies targeting five types of neutralizing or non-neutralizing epitopes on SARS-CoV-2 RBD. These fully human single-domain antibodies bound specifically to SARS-CoV-2 RBD with subnanomolar to low nanomolar affinities. Some of them were found to potently neutralize pseudotyped and live virus, and therefore may represent promising candidates for prophylaxis and therapy of COVID-19. This study also reports unique immunogenic profile of SARS-CoV-2 RBD compared to that of SARS-CoV and MERS-CoV, which may have important implications for the development of effective vaccines against SARS-CoV-2.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-923011

RESUMO

The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 800 laboratory-confirmed human infections, including 25 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS-CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. Here, we report for the first time that a SARS-CoV-specific human monoclonal antibody, CR3022, could bind potently with 2019-nCoV RBD (KD of 6.3 nM). The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. Therefore, CR3022 has the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g., m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, indicating that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...