Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein & Cell ; (12): 513-531, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-939859

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Assuntos
Animais , Humanos , Masculino , China , Genômica , Praguicidas , Spodoptera/genética , Transcriptoma
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456190

RESUMO

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) issued a significant and urgent threat to global health. The exact animal origin of SARS-CoV-2 remains obscure and understanding its host range is vital for preventing interspecies transmission. Previously, we have assessed the target cell profiles of SARS-CoV-2 in pets, livestock, poultry and wild animals. Herein, we expand this investigation to a wider range of animal species and viruses to provide a comprehensive source for large-scale screening of potential virus hosts. Single cell atlas for several mammalian species (alpaca, hamster, hedgehog, chinchilla etc.), as well as comparative atlas for lung, brain and peripheral blood mononuclear cells (PBMC) for various lineages of animals were constructed, from which we systemically analyzed the virus entry factors for 113 viruses over 20 species from mammalians, birds, reptiles, amphibians and invertebrates. Conserved cellular connectomes and regulomes were also identified, revealing the fundamental cell-cell and gene-gene cross-talks between these species. Overall, our study could help identify the potential host range and tissue tropism of SARS-CoV-2 and a diverse set of viruses and reveal the host-virus co-evolution footprints.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452903

RESUMO

Civets are small mammals belonging to the family Viverridae. The masked palm civets (Paguma larvata) served as an intermediate host in the bat-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) in 20031. Because of their unique role in the SARS outbreak, civets were suspected as a potential intermediate host of SARS-CoV-2, the etiological pathogen of the COVID-19 pandemic. Besides their susceptibility to coronaviruses, civets can also be infected by other viruses, such as canine distemper viruses2, parvoviruses3, influenza viruses4, etc. Regarding the ecological and economical role of civets, it is vital to evaluate the potential threats from different pathogens to these animals. Receptor binding is a necessary step for virus entry into host cells. Understanding the distribution of receptors of various viruses provides hints to their potential tissue tropisms. Herein, we characterized the cell atlas of five important organs (the frontal lobe, lung, liver, spleen and kidney) of masked palm civets (Paguma larvata) and described the expression profiles of receptor associated genes of 132 viruses from 25 families, including 16 viruses from 10 families reported before that can attack civets and 116 viruses with little infection record.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-149690

RESUMO

A few animals have been suspected to be intermediate hosts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scale single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is missing. Here, we constructed the single-cell atlas for 11 representative species in pets, livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cells in cat was found considerably higher than other species we investigated and SARS-CoV-2 target cells were detected in multiple cell types of domestic pig, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming intermediate hosts in future coronavirus outbreak. Furthermore, we screened the expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of virus target cells. Taken together, our work provides a novel and fundamental strategy to screen virus target cells and susceptible species, based on single-cell transcriptomes we generated for domesticated animals and wildlife, which could function as a valuable resource for controlling current pandemics and serve as an early warning system for coping with future infectious disease threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...