Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300023

RESUMO

Silicon-based kinetic energy converters employing variable capacitors, also known as electrostatic vibration energy harvesters, hold promise as power sources for Internet of Things devices. However, for most wireless applications, such as wearable technology or environmental and structural monitoring, the ambient vibration is often at relatively low frequencies (1-100 Hz). Since the power output of electrostatic harvesters is positively correlated to the frequency of capacitance oscillation, typical electrostatic energy harvesters, designed to match the natural frequency of ambient vibrations, do not produce sufficient power output. Moreover, energy conversion is limited to a narrow range of input frequencies. To address these shortcomings, an impacted-based electrostatic energy harvester is explored experimentally. The impact refers to electrode collision and it triggers frequency upconversion, namely a secondary high-frequency free oscillation of the electrodes overlapping with primary device oscillation tuned to input vibration frequency. The main purpose of high-frequency oscillation is to enable additional energy conversion cycles since this will increase the energy output. The devices investigated were fabricated using a commercial microfabrication foundry process and were experimentally studied. These devices exhibit non-uniform cross-section electrodes and a springless mass. The non-uniform width electrodes were used to prevent pull-in following electrode collision. Springless masses from different materials and sizes, such as 0.5 mm diameter Tungsten carbide, 0.8 mm diameter Tungsten carbide, zirconium dioxide, and silicon nitride, were added in an attempt to force collisions over a range of applied frequencies that would not otherwise result in collisions. The results show that the system operates over a relatively wide frequency range (up to 700 Hz frequency range), with the lower limit far below the natural frequency of the device. The addition of the springless mass successfully increased the device bandwidth. For example, at a low peak-to-peak vibration acceleration of 0.5 g (peak-to-peak), the addition of a zirconium dioxide ball doubled the device's bandwidth. Testing with different balls indicates that the different sizes and material properties have different effects on the device's performance, altering its mechanical and electrical damping.


Assuntos
Compostos de Tungstênio , Vibração , Fenômenos Físicos
2.
J Biomech Eng ; 136(10): 101001, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24769921

RESUMO

It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive to solve cardiovascular flows since it can provide simulation results that are presumably physically more realistic with at least comparable computational effort for a given level of accuracy.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Hemodinâmica , Modelos Cardiovasculares , Humanos , Modelagem Computacional Específica para o Paciente , Fluxo Pulsátil , Estresse Mecânico , Viscosidade
3.
J Biomech Eng ; 125(6): 777-84, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14986401

RESUMO

Formulation of a 3-D lubrication simulation of a total hip replacement in vivo is presented using a finite difference approach. The goal is to determine if hydrodynamic lubrication is taking place, how thick the joint fluid film is and over what percentage of two gait cycles, (walking and bicycling), the hydrodynamic lubricating action is occurring, if at all. The assumption of rigid surfaces is made, which is conservative in the sense that pure hydrodynamic lubrication is well known to predict thinner films than elasto-hydrodynamic lubrication (EHL) for the same loading. The simulation method includes addressing the angular velocity direction changes and accurate geometry configuration for the acetabular cup and femoral head components and provides a range of results for material combinations of CoCrMo-on-UHMWPE, CoCrMo-on-CoCrMo, and alumina-on-alumina components. Results are in the form of the joint fluid film pressure distributions, load components and film thicknesses of the joint fluid, for the gait cycles of walking and bicycling. Results show hydrodynamic action occurs in only about 10% of a walking gait cycle and throughout nearly 90% of a bicycling gait. During the 10% of the walking cycle that develops hydrodynamic lubrication, the minimum fluid film thicknesses are determined to be between 0.05 micron and 1.1 microns, while the range of film thicknesses for bicycling is between 0.1 micron and 1.4 microns, and occurs over 90% of the bicycling gait. Pressure distributions for these same periods are in the range of 2 MPa to 870 MPa for walking and 1 MPa to 24 MPa for bicycling.


Assuntos
Ciclismo , Ligas de Cromo , Análise de Falha de Equipamento/métodos , Articulação do Quadril/fisiopatologia , Articulação do Quadril/cirurgia , Prótese de Quadril , Modelos Biológicos , Líquido Sinovial/fisiologia , Materiais Revestidos Biocompatíveis , Simulação por Computador , Fricção , Humanos , Pressão Hidrostática , Lubrificação , Estresse Mecânico , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA