Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717994

RESUMO

Uranyl fluoride (UO2F2) particles (<20 µm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.

2.
Analyst ; 149(8): 2244-2251, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415746

RESUMO

A microextraction liquid sampling system coupled to a quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) was utilized to spatially discern uranium particles, isotopically, on a cellulose-based swipe material (i.e., J-type swipe). These types of swipes are often used by the International Atomic Energy Agency (IAEA) as part of their environmental sampling program. A grid was created such that extraction locations covered the center circle (n = 34 without overlapping). Uranium (U) particulates (<20 µm) of varying U isotopic abundance and chemical form (i.e., uranyl fluoride and uranyl nitrate hexahydrate) were mechanically placed on the swipes in random locations and detected via the microextraction-ICP-MS methodology. Heat maps were subsequently generated to show the placement of the particulate with their respective intensity and isotopic determination. This detection of the uranium particulates, via isotopic determination, agreed with reference values for these materials. Additionally, depleted (235U/238U = 0.002) uranium particulates were placed directly within a clay matrix, on the swipe surface, and subjected to analysis by microextraction-ICP-MS. The mapping of the swipe demonstrated, for the first time, the employment of the microextraction-ICP-MS method for extracting sample from a complex matrix, and correctly identifying the uranium isotopic composition. This example ultimately demonstrates the utility of the methodology for detecting particles of interest in complex matrices.

3.
Anal Chem ; 95(43): 15867-15874, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37801814

RESUMO

The microextraction sampling technique was integrated with triple quadrupole─inductively coupled plasma-mass spectrometry (TQ-ICP-MS) to directly sample and measure the isotopic compositions of uranium (U) and plutonium (Pu) from cotton swipes. Once extracted, the U/Pu were directed into the TQ-ICP-MS instrument for isotopic determination. Carbon dioxide (CO2) and helium (He) gases were delivered to a collision reaction cell within the ICP-MS system for ion separation. The CO2 reacts with the U+ forming UO+ which is ultimately separated from the Pu+ ions of interest in the third quadrupole. This study demonstrates direct liquid extraction of U/Pu from a solid surface and subsequent measurement by TQ-ICP-MS in <60 s. Flow rates were optimized (0.3 mL min-1 CO2 and 5 mL min-1 He) in the reaction cell of the ICP-MS system to maximize the Pu signal while minimizing U interferences (i.e., 238U+ tail and 238UH+) at m/z 239. Low levels of Pu (∼2 pg) were deposited on a cotton swipe along with U at concentrations ranging from 20 to 200 ng. The 240Pu/239Pu ratio was measured with <7% relative difference from the certified value at all U concentrations. Major and minor U isotope ratios were also measured with <4% relative difference. This highlights that the microextraction-TQ-ICP-MS method can extract a mixed U/Pu sample directly from a cotton swipe and measure both isotopic systems without chemical separation.

4.
Anal Chem ; 95(32): 12131-12138, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37466149

RESUMO

Plutonium measurements are essential to the nuclear forensics and safeguards community. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source coupled with an Orbitrap mass spectrometer is a proven platform for uranium isotope ratio determinations. This work expands the LS-APGD-Orbitrap platform capabilities by reporting the first-ever analysis of plutonium with the LS-APGD and the first-ever measurement of elemental plutonium with an Orbitrap mass spectrometer. This coupling has the potential to dramatically reduce the complex sample manipulations required for traditional analysis techniques employed for actinide isotope ratio determinations. As a first step toward the goal of simultaneous uranium and plutonium isotope ratio determinations, the initial characterization and optimization of the platform for the detection of plutonium are reported. Collision-induced dissociation modality settings were optimized to reduce water-related and other molecular clusters containing plutonium, maximizing 242Pu16O2+ responses. A design of experiments study was conducted to optimize the discharge conditions of the dual-electrode LS-APGD toward the responsivity of 242Pu16O2+. The measurement sensitivity was determined from a Pu response curve, yielding a limit of detection of 10 fg (absolute) of total analyte when data was collected and processed with a Spectroswiss FTMS Booster X2 data acquisition system. Additionally, plutonium and uranium were measured in a simultaneous acquisition, and each analyte remained unaffected by the other. It is believed that the LS-APGD-Orbitrap platform could be a valuable addition to the nuclear forensics' toolbox and, indeed, other scientific disciplines and regulatory communities in which rapid, high-resolution plutonium determinations are paramount.

5.
Anal Methods ; 14(44): 4466-4473, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317583

RESUMO

An automated microextraction method coupled to an inductively coupled plasma - mass spectrometer (ICP-MS) was developed for the direct analysis of solid uranium particulates on the surface of cotton swipes. The microextraction probe extracts particulates from the sample surface, in a flowing solvent, and directs the removed analyte to an ICP-MS for isotopic determination. The automated system utilizes a mechanical XY stage that is software controlled with the capability of saving and returning to specific locations and a camera focused to the swipe surface for optimal viewing of the extracted locations (i.e., material present). Here, particulates (n = 135) were extracted and measured by ICP-MS, including 35 depleted uranyl nitrate hexahydrate (UN) (used for mass bias corrections), 50 uranyl fluoride (UO2F2), and 50 uranyl acetate (UAc) particulates. Blank extractions were performed on the cotton swipes between triplicate sample analyses. Between each swipe extraction, the probe was sent between two wells containing 10% and 5% HNO3 to clean the probe head and to eliminate any analyte carryover between particulates. The measured 235U/238U and 234U/238U isotope ratios for the UO2F2 particulates were 0.00725(8) and 0.000054(4), a percent relative difference (% RD) of -0.041% and -1.7% from the reference isotope ratios determined in-lab through multi-collector ICP-MS analysis of dissolved aliquots of the U material. The UAc samples had a measured 235U/238U isotope ratio of 0.00206(7), a -0.96% relative difference from the reference value of 0.00208(1). The 234U/238U and 236U/238U isotope ratios were 0.000008(1) and 0.000031(4), -5.1% RD and -4.3% RD, respectively. The automated sample stage enabled seamless and rapid particle analysis, leading to a significant increase in throughput versus what was previously possible. Additionally, the saved location capability reduced user sampling error as sampling locations were easily stored and recalled. Analysis of U particles on the swipe surface - including blanks, mass bias, and triplicate extractions - was completed in less than an hour without any sample preparation necessary.


Assuntos
Urânio , Urânio/análise , Isótopos/análise , Espectrometria de Massas/métodos , Poeira/análise
6.
Anal Chim Acta ; 1209: 339836, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569868

RESUMO

Direct isotope ratio analysis of solid uranium particulates on cotton swipes was achieved using a solution-based microextraction technique, coupled to a quadrupole inductively coupled plasma - mass spectrometer (ICP-MS). This microextraction-ICP-MS methodology provides rapid isotopic analysis which could be applicable to nuclear safeguards measurements. Particulates of uranyl nitrate hexahydrate (UO2(NO3)2·6H2O) and uranyl fluoride (UO2F2) ranging from 6 µm to 40 µm in length were transferred to cotton swipes with a particle manipulator. The microextraction probe then delivers a 5% nitric acid (HNO3) solvent onto the swipe surface to extract the uranium species. The extracted sample is then delivered to the ICP-MS for isotopic determination. The majority of uranium signal (∼99% and ∼94% for UO2(NO3)2·6H2O and UO2F2, respectively) was detected in the first 15 s extraction, while subsequent extractions on the same location had low or no U signal, suggesting near complete removal of the solid uranium compounds from the swipe surface. Ten samples (for each of the uranium compounds), were analyzed for their isotopic composition. For UO2(NO3)2·6H2O, the determined isotope ratios resulted in a % relative difference (% RD) from the referenced isotope ratios of 0.97, 1.0, and 7.3% for 234U/238U, 235U/238U, and 236U/238U, respectively. The % RD of the UO2F2 isotope ratios were 1.9 and 0.60% for 234U/238U and 235U/238U, respectively. The preliminary limits of detection were determined to be 0.002, 0.4, and 60 pg for 234U, 235U and 238U, respectively This work demonstrates that microextraction ICP-MS is a rapid and sensitive method that could directly determine uranium isotope ratios of UO2(NO3)2·6H2O and UO2F2 particulates on cotton swipes.


Assuntos
Compostos de Urânio , Urânio , Isótopos , Espectrometria de Massas/métodos , Têxteis , Urânio/análise
7.
Anal Chem ; 93(32): 11133-11139, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34236176

RESUMO

The ability to directly measure uranium isotope ratios on environmental swipes has been achieved through a solution-based microextraction process and represents a significant advancement toward the development of a rapid method to analyze international nuclear safeguard samples. Here, a microextraction probe is lowered and sealed onto the swipe surface, and analytes within the sampling site (∼8 mm2) are dissolved and extracted into a flowing solvent of 2% nitric acid (HNO3). The mobilized species are subsequently directed into an inductively coupled plasma-mass spectrometer (ICP-MS) for accurate and precise isotope ratio determination. This work highlights the novelty of the sampling mechanism, particularly with the direct coupling of the microextraction probe to the ICP-MS and measurement of uranium isotope ratios. The preliminary method detection limit for the microextraction-ICP-MS method, utilizing a quadrupole-based MS, was determined to be ∼50 pg of 238U. Additionally, precise and accurate isotope ratio measurements were achieved on uranium reference materials for both the major (235U/238U) and minor (234U/238U and 236U/238U) ratios. While the present work is focused on directly measuring uranium isotopic systems on swipe surfaces for nuclear safeguards and verification applications, the benefits would extend across many applications in which direct solid sampling is sought for elemental and isotopic analysis.


Assuntos
Urânio , Isótopos , Espectrometria de Massas , Urânio/análise
8.
Talanta ; 221: 121573, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076120

RESUMO

The analysis of impurities in a uranium ore concentrate (UOC) could provide information regarding the source, production history, and potential intended use of the UOC. This study involves the analysis of UOC samples for phosphorus and sulfur. Concentrations were determined by triple quadrupole inductively coupled plasma - mass spectrometry and compared with results from a pyrohydrolysis method as well as previously reported results. The sulfur and phosphorus concentrations, determined by the mass spectrometer, were used to explore possible trends in a series of UOC material, and the uncertainties were calculated using GUM workbench software. The triple quadrupole inductively coupled plasma - mass spectrometer method allows for the removal of interferences in the analysis of species.

9.
Appl Spectrosc ; 75(5): 556-564, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33030968

RESUMO

Presented here is a novel automated method for determining the trace element composition of bulk thorium by inductively coupled plasma-optical emission spectroscopy (ICP-OES). ICP-OES is a universal approach for measuring the trace elemental impurities present in actinide-rich materials; however, due to the emission rich spectrum of the actinide, a separation from the trace elements is warranted for spectrochemical analysis. Here, AG MP-1 ion exchange resin was utilized for retention of the Th matrix, while allowing the trace element impurities to be separated prior to subsequent analysis using ICP-OES. After demonstrating the separation on traditional gravity-driven columns, the methodology was transitioned to an automated platform for comparison. This automated platform utilizes syringe-driven sample and solvent flow and can collect the trace element and thorium fractions in separate locations. While reducing the sample size (500 µL, 1.5 mg of Th), maintaining the overall separation efficiency (recoveries >95%), and illustrating the sample throughput ability (n = 10+), this automated methodology could be readily adopted to nuclear facilities in which the determination of trace elemental impurities in Th samples is warranted.

10.
Anal Chem ; 92(12): 8591-8598, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32501709

RESUMO

The collection of solid particulates and liquids from surfaces by the use of cloth swipes is fairly ubiquitous. In such methods, there is a continuous concern regarding the ability to locate and quantitatively sample the analyte species from the material. In this effort, we demonstrate the initial coupling of an Advion Plate Express plate reader to a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source with an Orbitrap mass spectrometer to perform uranium isotopic analyses of solution residues on cotton swipes. The Plate Express employs a sampling probe head to engage and seal against the swipe surface. Subsequentially, the analyte residues are desorbed and transported within a 2% HNO3 electrolyte flow to the ionization source. Quantitative recoveries were observed following a single 30 s extraction step, with the absolute mass sampled per extraction being ∼100 ng. While the intrasample variability in the analytical responses for triplicate sampling of the same swipe yield ∼30% RSD, this lack of precision is offset by the ability to determine isotope ratios for enriched uranium specimens with a precision of better than 10% RSD. Pooled, intersample precision (n = 9) was found to be <5%RSD across the various sample compositions. Finally, 235U/238U determinations (ranging from 0.053 to 1.806) were accurate with errors of <10%, absolute. The 234U- and 236U-inclusive ratios were determined with similar accuracy in enriched samples. While the driving force for the effort is in the realm of nuclear nonproliferation efforts, the ubiquitous use of cloth swipes across many application areas could benefit from this convenient approach, including the use of versatile, reduced-format mass spectrometer systems.


Assuntos
Gossypium/química , Têxteis/análise , Urânio/análise , Pressão Atmosférica , Espectrometria de Massas
11.
Talanta ; 198: 257-262, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30876559

RESUMO

The analysis of environmental swipe samples for ultra-trace uranium (U) and plutonium (Pu) determinations is essential in the nuclear safeguards community. While mass spectrometry techniques for U and Pu detection continually improve, established separation methods are seldom reevaluated. Currently, actinide separations within the forensics community predominantly employ either Eichrom TEVA® or UTEVA® resins. The direct optimization of U and Pu separations utilizing both resins has not been widely reported. Here, several methods were explored with goals of increasing analyte recovery, acquiring cleaner blanks, and improving the separation efficiency of ultra-trace levels of U and Pu from environmental swipe samples. The optimized separation methodology of U and Pu was examined using certified reference materials and archived environmental swipe samples.

12.
Appl Spectrosc ; 73(8): 927-935, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30803262

RESUMO

Automated introduction platforms integrated with inductively coupled plasma optical emission spectroscopy (ICP-OES) systems are continuously being improved. Expanding on the introduction systems, a newly developed automated ion chromatography system was explored for performing rapid in-line separations coupled to ICP-OES for the detection of trace elements in uranium. Trace elements are separated from a uranium material and the analytes are directed into the ICP-OES for subsequent detection. Detection parameters such as exposure time frequency, wavelength selection, and settling times were explored to gain insight on optimal detection schemes for in-line trace elemental analysis. The methodology was applied in the analysis of a uranium oxide (U3O8) certified reference material, CRM-124. It was found here that the sensitivity and uncertainty of the technique are greatly affected by how the ICP-OES is employed to collect data. Overall it was determined that faster exposure replicates can provide greater peak resolution with higher fidelity measurements but are limited with respect to the total analysis time (i.e., limited in detection timely separations). Zeta scores, which combine accuracy and uncertainty of certified values and experimental values, were used to validate the ICP-OES modes of operation.

13.
Anal Chem ; 90(15): 9441-9448, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29954173

RESUMO

A fully automated method for the separation of low-concentration uranium from plutonium in environmental swipe samples has been developed. The offline chromatography system features renewable 1 mL Eichrom TEVA and UTEVA column generation from bulk resin slurry. Discrete fractions of the separated actinides are delivered into user defined vials for future analysis. Clean room background levels were achieved outside of a cleanroom environment with this method. Purification of uranium and plutonium from various sample matrixes and at various concentrations was successful. Major and minor isotope ratios for both elements were measured via multiple collector inductively coupled plasma mass spectrometry and were in good agreement with certified reference values. Validation of the separation method was conducted on archived environmental samples and agreed with values previously reported using standard column chemistry.

14.
Phys Chem Chem Phys ; 10(1): 77-9, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18075684

RESUMO

The infrared spectra of protonated acetone and the proton bound acetone dimer are obtained revealing vibrational resonances associated with the shared proton motions, which are in agreement with the predictions from ab initio, MP2, harmonic frequency calculations.


Assuntos
Acetona/química , Prótons , Dimerização , Espectrometria de Massas , Modelos Químicos , Teoria Quântica , Espectrofotometria Infravermelho/métodos , Vibração
16.
J Am Chem Soc ; 129(33): 10229-43, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17655303

RESUMO

Small carbon clusters (Cn, n = 2-15) are produced in a molecular beam by pulsed laser vaporization and studied with vacuum ultraviolet (VUV) photoionization mass spectrometry. The required VUV radiation in the 8-12 eV range is provided by the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. Mass spectra at various ionization energies reveal the qualitative relative abundances of the neutral carbon clusters produced. By far the most abundant species is C3. Using the tunability of the ALS, ionization threshold spectra are recorded for the clusters up to 15 atoms in size. The ionization thresholds are compared to those measured previously with charge-transfer bracketing methods. To interpret the ionization thresholds for different cluster sizes, new ab initio calculations are carried out on the clusters for n = 4-10. Geometric structures are optimized at the CCSD(T) level with cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations are applied to both neutral and cation species to determine adiabatic and vertical ionization potentials. The comparison of computed and measured ionization potentials makes it possible to investigate the isomeric structures of the neutral clusters produced in this experiment. The measurements are inconclusive for the n = 4-6 species because of unquenched excited electronic states. However, the data provide evidence for the prominence of linear structures for the n = 7, 9, 11, 13 species and the presence of cyclic C10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...