Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 108(12): 1531-1547, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864311

RESUMO

NEW FINDINGS: What is the central question of this study? Does the hormone Klotho affect the myogenic response of muscle cells to mechanical loading or exercise? What is the main finding and its importance? Klotho prevents direct, mechanical activation of genes that regulate muscle differentiation, including genes that encode the myogenic regulatory factor myogenin and proteins in the canonical Wnt signalling pathway. Similarly, elevated levels of klotho expression in vivo prevent the exercise-induced increase in myogenin-expressing cells and reduce exercise-induced activation of the Wnt pathway. These findings demonstrate a new mechanism through which the responses of muscle to the mechanical environment are regulated. ABSTRACT: Muscle growth is influenced by changes in the mechanical environment that affect the expression of genes that regulate myogenesis. We tested whether the hormone Klotho could influence the response of muscle to mechanical loading. Applying mechanical loads to myoblasts in vitro increased RNA encoding transcription factors that are expressed in activated myoblasts (Myod) and in myogenic cells that have initiated terminal differentiation (Myog). However, application of Klotho to myoblasts prevented the loading-induced activation of Myog without affecting loading-induced activation of Myod. This indicates that elevated Klotho inhibits mechanically-induced differentiation of myogenic cells. Elevated Klotho also reduced the transcription of genes encoding proteins involved in the canonical Wnt pathway or their target genes (Wnt9a, Wnt10a, Ccnd1). Because the canonical Wnt pathway promotes differentiation of myogenic cells, these findings indicate that Klotho inhibits the differentiation of myogenic cells experiencing mechanical loading. We then tested whether these effects of Klotho occurred in muscles of mice experiencing high-intensity interval training (HIIT) by comparing wild-type mice and klotho transgenic mice. The expression of a klotho transgene combined with HIIT synergized to tremendously elevate numbers of Pax7+ satellite cells and activated MyoD+ cells. However, transgene expression prevented the increase in myogenin+ cells caused by HIIT in wild-type mice. Furthermore, transgene expression diminished the HIIT-induced activation of the canonical Wnt pathway in Pax7+ satellite cells. Collectively, these findings show that Klotho inhibits loading- or exercise-induced activation of muscle differentiation and indicate a new mechanism through which the responses of muscle to the mechanical environment are regulated.


Assuntos
Músculos , Células Satélites de Músculo Esquelético , Animais , Camundongos , Diferenciação Celular , Hormônios/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
2.
Aging Cell ; 21(10): e13690, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098370

RESUMO

Intramuscular macrophages play key regulatory roles in determining the response of skeletal muscle to injury and disease. Recent investigations showed that the numbers and phenotype of intramuscular macrophages change during aging, suggesting that those changes could influence the aging process. We tested that hypothesis by generating a mouse model that harbors a myeloid cell-specific mutation of Spi1, which is a transcription factor that is essential for myeloid cell development. The mutation reduced the numbers of macrophages biased to the CD163+/CD206+ M2 phenotype in muscles of aging mice without affecting the numbers of CD68-expressing macrophages and reduced the expression of transcripts associated with the M2-biased phenotype. The mutation did not affect the colony-forming ability or the frequency of specific subpopulations of bone marrow hematopoietic cells and did not affect myeloid/lymphoid cell ratios in peripheral blood leukocyte populations. Cellularity of most myeloid lineage cells was not influenced by the mutation. The Spi1 mutation in bone marrow-derived macrophages in vitro also did not affect expression of transcripts that indicate the M2-biased phenotype. Thus, myeloid cell-targeted mutation of Spi1 influences macrophage phenotype in muscle but did not affect earlier stages of differentiation of cells in the macrophage lineage. The mutation reduced age-related muscle fibrosis, which is consistent with the reduction of M2-biased macrophages, and reduced expression of the pro-fibrotic enzyme arginase. Most importantly, the mutation prevented sarcopenia. Together, our observations indicate that intramuscular, M2-biased macrophages play significant roles in promoting detrimental, age-related changes in muscle.


Assuntos
Sarcopenia , Animais , Camundongos , Arginase/metabolismo , Fibrose , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Células Mieloides , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle , Fatores de Transcrição/metabolismo
3.
FASEB J ; 36(3): e22192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35174906

RESUMO

Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Klotho/metabolismo , Desenvolvimento Muscular , Mioblastos/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Klotho/genética , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Via de Sinalização Wnt
4.
Hum Mol Genet ; 31(2): 189-206, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34392367

RESUMO

Leukemia inhibitory factor (LIF) can influence development by increasing cell proliferation and inhibiting differentiation. Because of its potency for expanding stem cell populations, delivery of exogenous LIF to diseased tissue could have therapeutic value. However, systemic elevations of LIF can have negative, off-target effects. We tested whether inflammatory cells expressing a LIF transgene under control of a leukocyte-specific, CD11b promoter provide a strategy to target LIF to sites of damage in the mdx mouse model of Duchenne muscular dystrophy, leading to increased numbers of muscle stem cells and improved muscle regeneration. However, transgene expression in inflammatory cells did not increase muscle growth or increase numbers of stem cells required for regeneration. Instead, transgene expression disrupted the normal dispersion of macrophages in dystrophic muscles, leading to transient increases in muscle damage in foci where macrophages were highly concentrated during early stages of pathology. The defect in inflammatory cell dispersion reflected impaired chemotaxis of macrophages to C-C motif chemokine ligand-2 and local increases of LIF production that produced large aggregations of cytolytic macrophages. Transgene expression also induced a shift in macrophage phenotype away from a CD206+, M2-biased phenotype that supports regeneration. However, at later stages of the disease when macrophage numbers declined, they dispersed in the muscle, leading to reductions in muscle fiber damage, compared to non-transgenic mdx mice. Together, the findings show that macrophage-mediated delivery of transgenic LIF exerts differential effects on macrophage dispersion and muscle damage depending on the stage of dystrophic pathology.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/metabolismo
5.
Nat Biomed Eng ; 5(8): 864-879, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33737730

RESUMO

Muscle loss and impairment resulting from traumatic injury can be alleviated by therapies using muscle stem cells. However, collecting sufficient numbers of autologous myogenic stem cells and expanding them efficiently has been challenging. Here we show that myogenic stem cells (predominantly Pax7+ cells)-which were selectively expanded from readily obtainable dermal fibroblasts or skeletal muscle stem cells using a specific cocktail of small molecules and transplanted into muscle injuries in adult, aged or dystrophic mice-led to functional muscle regeneration in the three animal models. We also show that sustained release of the small-molecule cocktail in situ through polymer nanoparticles led to muscle repair by inducing robust activation and expansion of resident satellite cells. Chemically induced stem cell expansion in vitro and in situ may prove to be advantageous for stem cell therapies that aim to regenerate skeletal muscle and other tissues.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Animais , Reprogramação Celular/efeitos dos fármacos , Colforsina/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Doenças Musculares/terapia , Nanopartículas/química , Fator de Transcrição PAX7/metabolismo , Polímeros/química , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Ácido Valproico/farmacologia
6.
Cell Mol Gastroenterol Hepatol ; 11(1): 117-145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32771388

RESUMO

BACKGROUND & AIMS: Gastric dysfunction in the elderly may cause reduced food intake, frailty, and increased mortality. The pacemaker and neuromodulator cells interstitial cells of Cajal (ICC) decline with age in humans, and their loss contributes to gastric dysfunction in progeric klotho mice hypomorphic for the anti-aging Klotho protein. The mechanisms of ICC depletion remain unclear. Klotho attenuates Wnt (wingless-type MMTV integration site) signaling. Here, we examined whether unopposed Wnt signaling could underlie aging-associated ICC loss by up-regulating transformation related protein TRP53 in ICC stem cells (ICC-SC). METHODS: Mice aged 1-107 weeks, klotho mice, APCΔ468 mice with overactive Wnt signaling, mouse ICC-SC, and human gastric smooth muscles were studied by RNA sequencing, reverse transcription-polymerase chain reaction, immunoblots, immunofluorescence, histochemistry, flow cytometry, and methyltetrazolium, ethynyl/bromodeoxyuridine incorporation, and ex-vivo gastric compliance assays. Cells were manipulated pharmacologically and by gene overexpression and RNA interference. RESULTS: The klotho and aged mice showed similar ICC loss and impaired gastric compliance. ICC-SC decline preceded ICC depletion. Canonical Wnt signaling and TRP53 increased in gastric muscles of klotho and aged mice and middle-aged humans. Overstimulated canonical Wnt signaling increased DNA damage response and TRP53 and reduced ICC-SC self-renewal and gastric ICC. TRP53 induction persistently inhibited G1/S and G2/M cell cycle phase transitions without activating apoptosis, autophagy, cellular quiescence, or canonical markers/mediators of senescence. G1/S block reflected increased cyclin-dependent kinase inhibitor 1B and reduced cyclin D1 from reduced extracellular signal-regulated kinase activity. CONCLUSIONS: Increased Wnt signaling causes age-related ICC loss by up-regulating TRP53, which induces persistent ICC-SC cell cycle arrest without up-regulating canonical senescence markers.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Células Intersticiais de Cajal/fisiologia , Estômago/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Humanos , Proteínas Klotho/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Animais , Estômago/citologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Via de Sinalização Wnt , Adulto Jovem
7.
Exp Gerontol ; 145: 111200, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359378

RESUMO

Skeletal muscle regeneration that follows acute injury is strongly influenced by interactions with immune cells that invade and proliferate in the damaged tissue. Discoveries over the past 20 years have identified many of the key mechanisms through which myeloid cells, especially macrophages, regulate muscle regeneration. In addition, lymphoid cells that include CD8+ T-cells and regulatory T-cells also significantly affect the course of muscle regeneration. During aging, the regenerative capacity of skeletal muscle declines, which can contribute to progressive loss of muscle mass and function. Those age-related reductions in muscle regeneration are accompanied by systemic, age-related changes in the immune system, that affect many of the myeloid and lymphoid cell populations that can influence muscle regeneration. In this review, we present recent discoveries that indicate that aging of the immune system contributes to the diminished regenerative capacity of aging muscle. Intrinsic, age-related changes in immune cells modify their expression of factors that affect the function of a population of muscle stem cells, called satellite cells, that are necessary for normal muscle regeneration. For example, age-related reductions in the expression of growth differentiation factor-3 (GDF3) or CXCL10 by macrophages negatively affect adult myogenesis, by disrupting regulatory interactions between macrophages and satellite cells. Those changes contribute to a reduction in the numbers and myogenic capacity of satellite cells in old muscle, which reduces their ability to restore damaged muscle. In addition, aging produces changes in the expression of molecules that regulate the inflammatory response to injured muscle, which also contributes to age-related defects in muscle regeneration. For example, age-related increases in the production of osteopontin by macrophages disrupts the normal inflammatory response to muscle injury, resulting in regenerative defects. These nascent findings represent the beginning of a newly-developing field of investigation into mechanisms through which aging of the immune system affects muscle regeneration.


Assuntos
Regeneração , Células Satélites de Músculo Esquelético , Imunomodulação , Desenvolvimento Muscular , Músculo Esquelético
8.
J Immunol ; 205(6): 1664-1677, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32817369

RESUMO

Changes in macrophage phenotype in injured muscle profoundly influence regeneration. In particular, the shift of macrophages from a proinflammatory (M1 biased) phenotype to a proregenerative (M2 biased) phenotype characterized by expression of CD206 and CD163 is essential for normal repair. According to the current canonical mechanism regulating for M1/M2 phenotype transition, signaling through PPARδ is necessary for obtaining the M2-biased phenotype. Our findings confirm that the murine myeloid cell-targeted deletion of Ppard reduces expression in vitro of genes that are activated in M2-biased macrophages; however, the mutation in mice in vivo increased numbers of CD206+ M2-biased macrophages and did not reduce the expression of phenotypic markers of M2-biased macrophages in regenerating muscle. Nevertheless, the mutation impaired CCL2-mediated chemotaxis of macrophages and slowed revascularization of injured muscle. In contrast, null mutation of IL-10 diminished M2-biased macrophages but produced no defects in muscle revascularization. Our results provide two significant findings. First, they illustrate that mechanisms that regulate macrophage phenotype transitions in vitro are not always predictive of mechanisms that are most important in vivo. Second, they show that mechanisms that regulate macrophage phenotype transitions differ in different in vivo environments.


Assuntos
Interleucina-10/metabolismo , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Doenças Musculares/metabolismo , Células Mieloides/fisiologia , PPAR delta/metabolismo , Doença Aguda , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Musculares/genética , Doenças Musculares/imunologia , PPAR delta/genética , Fenótipo , Regeneração , Células Th1/imunologia , Células Th2/imunologia
9.
Exp Physiol ; 105(1): 132-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724771

RESUMO

NEW FINDINGS: What is the central question of this study? Does modulating the expression of Klotho affect myogenesis following acute injury of healthy, non-senescent muscle? What is the main finding and its importance? Klotho can accelerate muscle growth following acute injury of healthy, adult mice, which supports the possibility that increased delivery of Klotho could have therapeutic value for improving repair of damaged muscle. ABSTRACT: Skeletal muscle injuries activate a complex programme of myogenesis that can restore normal muscle structure. We tested whether modulating the expression of klotho influenced the response of mouse muscles to acute injury. Our findings show that klotho expression in muscle declines at 3 days post-injury. That reduction in klotho expression coincided with elevated expression of targets of Wnt signalling (Ccnd1; Myc) and increased MyoD+ muscle cell numbers, reflecting the onset of myogenic cell differentiation. klotho expression subsequently increased at 7 days post-injury with elevated expression occurring primarily in inflammatory lesions, which was accompanied by reduced expression of Wnt target genes (Ccnd1: 91%; Myc: 96%). Introduction of a klotho transgene maintained high levels of klotho expression over the course of muscle repair and attenuated the increases in Ccnd1 and Myc expression that occurred at 3 days post-injury. Correspondingly, transgene expression reduced Wnt signalling in Pax7+ cells, reflected by reductions in Pax7+ cells expressing active ß-catenin, and reduced the numbers of MyoD+ cells at 3 days post-injury. At 21 days post-injury, muscles in klotho transgenic mice showed increased Pax7+ and decreased myogenin+ cell densities and large increases in myofibre size. Likewise, treating myogenic cells in vitro with Klotho reduced Myod expression but did not affect Pax7 expression. Muscle inflammation was only slightly modulated by increased klotho expression, initially reducing the expression of M2-biased macrophage markers Cd163 and Cd206 at 3 days post-injury and later increasing the expression of pan-macrophage marker F480 and Cd68 at 21 days post-injury. Collectively, our study shows that Klotho modulates myogenesis and that increased expression accelerates muscle growth after injury.


Assuntos
Glucuronidase/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Via de Sinalização Wnt , Animais , Células Cultivadas , Ciclina D1/metabolismo , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
10.
Nat Commun ; 10(1): 2788, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243277

RESUMO

Many potentially therapeutic molecules have been identified for treating Duchenne muscular dystrophy. However, targeting those molecules only to sites of active pathology is an obstacle to their clinical use. Because dystrophic muscles become extensively inflamed, we tested whether expressing a therapeutic transgene in leukocyte progenitors that invade muscle would provide selective, timely delivery to diseased muscle. We designed a transgene in which leukemia inhibitory factor (LIF) is under control of a leukocyte-specific promoter and transplanted transgenic cells into dystrophic mice. Transplantation diminishes pathology, reduces Th2 cytokines in muscle and biases macrophages away from a CD163+/CD206+ phenotype that promotes fibrosis. Transgenic cells also abrogate TGFß signaling, reduce fibro/adipogenic progenitor cells and reduce fibrogenesis of muscle cells. These findings indicate that leukocytes expressing a LIF transgene reduce fibrosis by suppressing type 2 immunity and highlight a novel application by which immune cells can be genetically modified as potential therapeutics to treat muscle disease.


Assuntos
Terapia Genética , Fator Inibidor de Leucemia/metabolismo , Distrofia Muscular Animal/terapia , Animais , Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica , Fator Inibidor de Leucemia/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Transgenes
11.
FASEB J ; 33(1): 1415-1427, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130434

RESUMO

Aging is associated with diminished muscle mass, reductions in muscle stem cell functions, and increased muscle fibrosis. The immune system, especially macrophages, can have important roles in modulating muscle growth and regeneration, suggesting that the immune system may also have significant influences on muscle aging. Moreover, the immune system experiences changes in function during senescence, suggesting that regulatory interaction between muscle cells and the immune system may also change during aging. In this study, we performed bone marrow transplantations between age-mismatched donor and recipient mice to test the influence of the age of the immune system on muscle aging. Transplantation of young bone marrow cells into old recipients prevented sarcopenia and prevented age-related change in muscle fiber phenotype. Transplantation of old bone marrow cells into young animals reduced satellite cell numbers and promoted satellite cells to switch toward a fibrogenic phenotype. We also demonstrated that conditioned media from young, but not old, bone marrow cells promoted myoblast proliferation in vitro, and we found that factors released by young bone marrow cells were more supportive of myotube differentiation in vitro. Together, our results demonstrate that aging of bone marrow cells promotes the age-related reduction of satellite cell number and function and contributes to sarcopenia.-Wang, Y., Wehling-Henricks, M., Welc, S. S., Fisher, A. L., Zuo, Q., Tidball, J. G. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia.


Assuntos
Envelhecimento/fisiologia , Sistema Imunitário/fisiologia , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/patologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular , Proliferação de Células , Senescência Celular/fisiologia , Feminino , Fibrose , Transplante de Células-Tronco Hematopoéticas , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia
12.
Aging Cell ; 17(6): e12828, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30256507

RESUMO

Sarcopenia is age-related muscle wasting that lacks effective therapeutic interventions. We found that systemic ablation of tumor necrosis factor-α (TNF-α) prevented sarcopenia and prevented age-related change in muscle fiber phenotype. Furthermore, TNF-α ablation reduced the number of satellite cells in aging muscle and promoted muscle cell fusion in vivo and in vitro. Because CD68+ macrophages are important sources of TNF-α and the number of CD68+ macrophages increases in aging muscle, we tested whether macrophage-derived TNF-α affects myogenesis. Media conditioned by TNF-α-null macrophages increased muscle cell fusion in vitro, compared to media conditioned by wild-type macrophages. In addition, transplantation of bone marrow cells from wild-type mice into TNF-α-null recipients increased satellite cell numbers and reduced numbers of centrally nucleated myofibers, indicating that myeloid cell-secreted TNF-α reduces muscle cell fusion. Transplanting bone marrow cells from wild-type mice into TNF-α-null recipients also increased sarcopenia, although transplantation did not restore the age-related change in muscle fiber phenotype. Collectively, we show that myeloid cell-derived TNF-α contributes to muscle aging by affecting sarcopenia and muscle cell fusion with aging muscle fibers. Our findings also show that TNF-α that is intrinsic to muscle and TNF-α secreted by immune cells work together to influence muscle aging.


Assuntos
Envelhecimento/patologia , Fibras Musculares Esqueléticas/patologia , Células Mieloides/metabolismo , Sarcopenia/patologia , Fator de Necrose Tumoral alfa/efeitos adversos , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Fusão Celular , Deleção de Genes , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Regeneração , Células Satélites de Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa/genética
13.
Compr Physiol ; 8(4): 1313-1356, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30215857

RESUMO

The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/imunologia , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular Facioescapuloumeral/imunologia , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular Facioescapuloumeral/genética
14.
Hum Mol Genet ; 27(1): 14-29, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040534

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle wasting disease in which inflammation influences the severity of pathology. We found that the onset of muscle inflammation in the mdx mouse model of DMD coincides with large increases in expression of pro-inflammatory cytokines [tumor necrosis factor-α (TNFα); interferon gamma (IFNγ)] and dramatic reductions of the pro-myogenic protein Klotho in muscle cells and large increases of Klotho in pro-regenerative, CD206+ macrophages. Furthermore, TNFα and IFNγ treatments reduced Klotho in muscle cells and increased Klotho in macrophages. Because CD206+/Klotho+ macrophages were concentrated at sites of muscle regeneration, we tested whether macrophage-derived Klotho promotes myogenesis. Klotho transgenic macrophages had a pro-proliferative influence on muscle cells that was ablated by neutralizing antibodies to Klotho and conditioned media from Klotho mutant macrophages did not increase muscle cell proliferation in vitro. In addition, transplantation of bone marrow cells from Klotho transgenic mice into mdx recipients increased numbers of myogenic cells and increased the size of muscle fibers. Klotho also acted directly on macrophages, stimulating their secretion of TNFα. Because TNFα is a muscle mitogen, we tested whether the pro-proliferative effects of Klotho on muscle cells were mediated by TNFα and found that increased proliferation caused by Klotho was reduced by anti-TNFα. Collectively, these data show that pro-inflammatory cytokines contribute to silencing of Klotho in dystrophic muscle, but increase Klotho expression by macrophages. Our findings also show that macrophage-derived Klotho can promote muscle regeneration by expanding populations of muscle stem cells and increasing muscle fiber growth in dystrophic muscle.


Assuntos
Glucuronidase/fisiologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inativação Gênica , Humanos , Inflamação/genética , Proteínas Klotho , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo
15.
Nat Rev Immunol ; 17(3): 165-178, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28163303

RESUMO

Diseases of muscle that are caused by pathological interactions between muscle and the immune system are devastating, but rare. However, muscle injuries that involve trauma and regeneration are fairly common, and inflammation is a clear feature of the regenerative process. Investigations of the inflammatory response to muscle injury have now revealed that the apparently nonspecific inflammatory response to trauma is actually a complex and coordinated interaction between muscle and the immune system that determines the success or failure of tissue regeneration.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/imunologia , Regeneração/imunologia , Animais , Humanos , Músculo Esquelético/lesões
16.
Hum Mol Genet ; 25(23): 5167-5177, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798095

RESUMO

FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11ß-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/biossíntese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Aldosterona/metabolismo , Animais , Citocromo P-450 CYP11B2/biossíntese , Citocromo P-450 CYP11B2/genética , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/patologia
17.
Hum Mol Genet ; 25(12): 2465-2482, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27154199

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of mdx pathology. Klotho experiences increased methylation of CpG sites in its promoter region, which is associated with gene silencing, and increases in a repressive histone mark, H3K9me2. Expression of a klotho transgene in mdx mice restored their longevity, reduced muscle wasting, improved function and greatly increased the pool of muscle-resident stem cells required for regeneration. Reductions of fibrosis in late, progressive stages of the mdx pathology achieved by transgene expression were paralleled by reduced expression of Wnt target genes (axin-2), transforming growth factor-beta (TGF-ß1) and collagens types 1 and 3, indicating that Klotho inhibition of the profibrotic Wnt/TGFß axis underlies its anti-fibrotic effect in aging, dystrophic muscle. Thus, epigenetic silencing of klotho during muscular dystrophy contributes substantially to lost regenerative capacity and increased fibrosis of dystrophic muscle during late progressive stages of the disease.


Assuntos
Fibrose/genética , Glucuronidase/genética , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Animais , Proteína Axina/biossíntese , Colágeno Tipo I/biossíntese , Colágeno Tipo III/biossíntese , Modelos Animais de Doenças , Fibrose/patologia , Regulação da Expressão Gênica , Inativação Gênica , Glucuronidase/antagonistas & inibidores , Humanos , Proteínas Klotho , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Regeneração/genética , Fator de Crescimento Transformador beta1/biossíntese
20.
Aging Cell ; 14(4): 678-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26009878

RESUMO

Muscle aging is associated with changes in myeloid cell phenotype that may influence age-related changes in muscle structure. We tested whether preventing age-related reductions in muscle neuronal nitric oxide synthase (nNOS) would obviate age-related changes in myeloid cells in muscle. Our findings show that muscle aging is associated with elevations of anti-inflammatory M2a macrophages that can increase muscle fibrosis. Expression of a muscle-specific nNOS transgene in mice prevented age-related increases in M2a macrophages. Transgene expression also reduced expression of collagens and decreased muscle fibrosis. The nNOS transgene prevented age-related increases in arginase-1 but did not influence TGFß expression, indicating that the transgene may prevent age-related muscle fibrosis by inhibiting the arginase-dependent profibrotic pathway. Although aged satellite cells or fibro-adipogenic precursor (FAPs) cells also promote fibrosis, transgene expression had no effect on the expression of key signaling molecules that regulate fibrogenic activity of those cells. Finally, we tested whether increases in M2a macrophages and the associated increase in fibrosis were attributable to aging of myeloid lineage cells. Young bone marrow cells (BMCs) were transplanted into young or old mice, and muscles were collected 8 months later. Muscles of young mice receiving young BMCs showed no effect on M2a macrophage number or collagen accumulation compared to age-matched, nontransplanted controls. However, muscles of old mice receiving young BMCs showed fewer M2a macrophages and less accumulation of collagen. Thus, the age-related increase in M2a macrophages in aging muscle and the associated muscle fibrosis are determined in part by the age of bone marrow cells.


Assuntos
Envelhecimento/patologia , Macrófagos/patologia , Músculo Esquelético/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Envelhecimento/genética , Animais , Arginase/genética , Arginase/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Contagem de Células , Colágeno/genética , Colágeno/metabolismo , Feminino , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase Tipo I/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...