Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 7: 254-262, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466731

RESUMO

A biodegradable metallic ureteral stent with suitable mechanical properties and antibacterial activity remains a challenge. Here we reveal the scientific significance of a biodegradable Mg-Sr-Ag alloy with a favorable combination of balanced mechanical properties, adjustable indwelling time in urinary tract and evident antibacterial activity via in vivo experiments in a swine model. Attributed to the rheo-solidification process, equiaxial microstructure and significantly refined grains (average grain size: 27.1 µm) were achieved. Mg17Sr2 and Mg4Ag were found as the primary precipitates in the matrix, due to which the alloy obtained ca. 111% increase in ultimate tensile strength in comparison to pure magnesium. Both the in vitro and in vivo results demonstrated the satisfactory biocompatibility of the alloy. Histological evaluation and bioindicators analysis suggested that there was no tissue damage, inflammation and lesions in the urinary system caused by the degradation process. The stent also improved the post-operative bladder functions viewed from the urodynamic results. Our findings highlight the potential of this alloy as antibacterial biodegradable urinary implant material.

2.
Acta Biomater ; 116: 415-425, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949824

RESUMO

Today, ureteral stent technology is making progress towards the reduction of complications and patient discomfort. Therefore, magnesium alloys have become excellent candidate materials for manufacturing ureteral stents due to their biodegradability and antibacterial activity. Built on our previous work on biodegradable magnesium alloys, this article reports a semisolid rheo-formed magnesium implant that displays degradability and biocompatibility in vivo, and feasibility as ureteral stents in a pig model. Refined non-dendritic microstructure was observed in the rheo-formed alloy, whose grain size and shape factor were ca. 25.2 µm and ca. 1.56 respectively. Neither post-interventional inflammation nor pathological changes were observed in the urinary system during the implantation period of 14 weeks, and the degradation profile (14 weeks) meets the common requirement for the indwelling time of ureteral stents (8 to 16 weeks). Furthermore, histopathological observation and urinalysis results confirmed that the alloy had significantly higher antibacterial activity than the medical-grade stainless steel control. To our knowledge, this is the first in vivo study of biodegradable magnesium alloy as urinary implants in large animal models. Our results demonstrate that magnesium alloys may be a reasonable option for manufacturing biodegradable ureteral stents.


Assuntos
Ligas , Ureter , Implantes Absorvíveis , Ligas/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Magnésio/farmacologia , Teste de Materiais , Stents , Suínos
3.
Materials (Basel) ; 13(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069823

RESUMO

Low-cost heat-resistant Al-Sc-Zr-Fe conductor wires were successfully manufactured by continuous rheo-extrusion process, and the mechanical and conductive properties of the materials were analyzed and compared after three different thermo-mechanical treatment methods. The coarse plate-shape Al3Fe phase transformed to small sized rod-like phase after solid solution treatment at 630 °C for 21 h. Direct aging treatment at 300 °C for 24 h led to the refinement and spheroidization of Al3Fe phase with a diameter of 200 nm. After the subsequent aging treatment at 300 °C for 24 h, the tensile strength and conductivity of the alloy wire significantly increased due to the homogeneous precipitation of the coherent spherical Al3(Sc, Zr) phase with an average size of 15 nm. The tensile strength, elongation, and conductivity of the alloy conductor wire after optimized thermo-mechanical treatment reached 165.7 MPa, 7.3%, and 60.26% International Annealed Copper Standard (IACS), respectively. The thermal resistance of the present alloy wire was superior to that of standard AT1 type alloy conductor according to IEC international standard.

4.
J Mech Behav Biomed Mater ; 77: 47-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888933

RESUMO

In previous studies, Mg-Sr alloys exhibited great biocompatibility with regard to test animals, and enhanced peri-implant bone formation. The objective of the present study was to investigate the effects of heat treatments on the mechanical and corrosion properties of Mg-Sr alloys. Various heat-treated Mg-xSr (x = 0.5, 1, and 2wt%, nominal composition) alloys were prepared using homogenization and aging treatments. Mechanical tests were performed at room temperature on the as-cast, homogenized, and peak-aged alloys. As the Sr content increased, the volume fraction of Mg17Sr2 phases within the as-cast alloys increased; in addition, the mechanical strength of the alloys initially increased and subsequently decreased, while the ductility decreased. Following the homogenization treatment, the mechanical strength of the alloys decreased, and the ductility increased. Nano-sized Mg17Sr2 phases were re-precipitated during the aging treatment. The age-hardening response at 160°C was enhanced as the Sr content increased. Following the aging treatment, there was an increase in the mechanical strength of the alloys; however, there was a slight reduction in the ductility. Immersion tests were conducted at 37°C for 360h, using Hank's buffered salt solution (HBSS), to study the degradation behavior of the alloys. As the Sr content of the Mg-Sr alloys increased, the corrosion rate (CR) increased owing to the galvanic effect. The homogenization treatment consequently reduced the CR dramatically, and the aging treatment had a slight effect on the CR. The peak-aged Mg-1Sr (wt%) alloy exhibited the best combination of properties. The tensile yield strength (TYS), ultimate tensile strength (UTS), elongation, compressive yield strength (CYS), ultimate compressive strength (UCS), compressibility, and CR of the as-cast Mg-1Sr (wt%) alloy were 56.0MPa, 92.67MPa, 1.27%, 171.4MPa, 243.6MPa, 22.3%, and 1.76mm/year, respectively. The respective results obtained for the peak-aged Mg-1Sr (wt%) alloys were 69.7MPa, 135.6MPa, 3.22%, 183.1MPa, 273.6MPa, 27.6%, and 1.33mm/year. Following immersion in HBSS, the primary corrosion products of the peak-aged Mg-1Sr (wt%) alloy were Mg(OH)2, MgO, MgCO3, Mg3(PO4)2, MgHPO4, and Mg(H2PO4)2, which enhanced the corrosion resistance by forming a composite corrosion film.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Magnésio/química , Estrôncio/química , Implantes Absorvíveis , Força Compressiva , Corrosão , Dureza , Temperatura Alta , Teste de Materiais , Microscopia Eletrônica de Varredura , Pressão , Próteses e Implantes , Desenho de Prótese , Solubilidade , Estresse Mecânico , Resistência à Tração , Difração de Raios X
5.
Acta Biomater ; 29: 455-467, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577986

RESUMO

Previous studies indicated that local delivery of strontium effectively increased bone quality and formation around osseointegrating implants. Therefore, implant materials with long-lasting and controllable strontium release are avidly pursued. The central objective of the present study was to investigate the in vivo biocompatibility, metabolism and osteogenic activity of the bioabsorbable Mg-1Sr (wt.%, nominal composition) alloy for bone regeneration. The general corrosion rate of the alloy implant as a femoral fracture fixation device was 0.55±0.03mm·y(-1) (mean value±standard deviation) in New Zealand White rabbits which meet the bone implantation requirements and can be adjusted by material processing methods. All rabbits survived and the histological evaluation showed no abnormal physiology or diseases 16 weeks post-implantation. The degradation process of the alloy did not significantly alter 16 primary indexes of hematology, cardiac damage, inflammation, hepatic functions and metabolic process. Significant increases in peri-implant bone volume and direct bone-to-implant contact (48.3%±15.3% and 15.9%±5.6%, respectively) as well as the expressions of four osteogenesis related genes (runt-related transcription factor 2, alkaline phosphatase, osteocalcin, and collagen, type I, alpha 1) were observed after 16 weeks implantation for the Mg-1Sr group when compared to the pure Mg group. The sound osteogenic properties of the Mg-1Sr alloy by long-lasting and controllable Sr release suggesting a very attractive clinical potential. STATEMENT OF SIGNIFICANCE: Sr (strontium) has exhibited pronounced effects to reduce the bone fracture risk in osteoporotic patients. Nonetheless, long-lasting local Sr release is hardly achieved by traditional methods like surface treatment. Therefore, a more efficient Sr local delivery platform is in high clinical demand. The stable and adjustable degradation process of Mg alloy makes it an ideal Sr delivery platform. We combine the well-known osteogenic properties of strontium with magnesium to manufacture bioabsorbable Mg-1Sr alloy with stable Sr release based on our previous studies. The in vitro and in vivo results both showed the alloy's suitable degradation rate and biocompatibility, and the sound osteogenic properties and stimulation effect on bone formation suggest its very attractive clinical potential.


Assuntos
Implantes Absorvíveis , Ligas/farmacologia , Interface Osso-Implante , Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Estrôncio/farmacologia , Ligas/química , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Magnésio/química , Coelhos , Estrôncio/química
6.
Mater Sci Eng C Mater Biol Appl ; 33(7): 3661-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23910262

RESUMO

A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m(2)·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm(2), which was much lower than 1.67 mA/mm(2) for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications.


Assuntos
Ligas/química , Tecnologia Biomédica , Teste de Materiais , Fenômenos Mecânicos , Ligas/farmacologia , Biodegradação Ambiental , Líquidos Corporais/efeitos dos fármacos , Corrosão , Dureza/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Fenômenos Mecânicos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Propriedades de Superfície , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...