Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798494

RESUMO

Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-µm-thick, mechanically flexible micro-electrocorticography (µECoG) BCI, integrating 256×256 electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording and 16,384 stimulation channels, from which we can simultaneously record up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.

2.
IEEE Trans Biomed Circuits Syst ; 15(4): 731-742, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260357

RESUMO

Emerging non-imaging ultrasound applications, such as ultrasonic wireless power delivery to implantable devices and ultrasound neuromodulation, require wearable form factors, millisecond-range pulse durations and focal spot diameters approaching 100 µm with electronic control of its three-dimensional location. None of these are compatible with typical handheld linear array ultrasound imaging probes. In this work, we present a 4 mm × 5 mm 2D ultrasound phased array transmitter with integrated piezoelectric ultrasound transducers on complementary metal-oxide-semiconductor (CMOS) integrated circuits, featuring pixel-level pitch-matched transmit beamforming circuits which support arbitrary pulse duration. Our direct integration method enabled up to 10 MHz ultrasound arrays in a patch form-factor, leading to focal spot diameter of ∼200 µm, while pixel pitch-matched beamforming allowed for precise three-dimensional positioning of the ultrasound focal spot. Our device has the potential to provide a high-spatial resolution and wearable interface to both powering of highly-miniaturized implantable devices and ultrasound neuromodulation.


Assuntos
Semicondutores , Transdutores , Óxidos , Ultrassonografia
4.
PLoS One ; 11(3): e0151402, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963616

RESUMO

Human adipose-derived stromal vascular fraction (hSVF) cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1) hSVF because of the rapid UEA1+ endothelium (EC) loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%). To determine which Wnt isoform(s) and receptor(s) may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml) was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that manipulating Wnt signaling could enhance control of hSVF vascularization in tissue engineering applications.


Assuntos
Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Wnt/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Microvasos/metabolismo , Neovascularização Fisiológica/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Wnt-5a
5.
Science ; 350(6258): 313-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472906

RESUMO

Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.


Assuntos
Mecanorreceptores , Próteses Neurais , Pele/inervação , Tato , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Mãos/anatomia & histologia , Mãos/inervação , Mãos/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Optogenética , Pressão , Transistores Eletrônicos
6.
Sci Rep ; 5: 13231, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307169

RESUMO

Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes.


Assuntos
Endocitose/genética , Hiperlipoproteinemia Tipo II/genética , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Plasmídeos/genética , Receptores de LDL/genética , Diferenciação Celular/genética , Células Cultivadas , Melhoramento Genético/métodos , Humanos , Plasmídeos/administração & dosagem , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...