Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803827

RESUMO

Gallium telluride (GaTe) one-dimensional (1D) and two-dimensional (2D) materials have drawn much attention for high-performance optoelectronic applications because it possesses a direct bandgap for all thickness. We report the morphology-controlled vapor phase growth of 1D GaTe nanowires and 2D GaTe nanosheets by a simple physical vapor transport (PVT) approach. The surface morphology, crystal structure, phonon vibration modes, and optical property of samples were characterized and studied. The growth temperature is a key synthetic factor to control sample morphology. The 1D GaTe single crystal monoclinic nanowires were synthesized at 550 °C. The strong interlayer interaction and high surface migration of adatoms on c-sapphire enable the assembly of 1D nanowires into 2D nanosheet under 600 °C. Based on the characterization results demonstrated, we propose the van der Waals growth mechanism of 1D nanowires and 2D nanosheets. Moreover, the visible-light photocatalytic activity of 1D nanowires and 2D nanosheets was examined. Both 1D and 2D GaTe nanostructures exhibit visible-light active photocatalytic activity, suggesting that the GaTe nanostructures may be promising materials for visible light photocatalytic applications.

2.
Nanoscale Res Lett ; 8(1): 443, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24160337

RESUMO

Photoconductivities of monocrystalline vanadium pentoxide (V2O5) nanowires (NWs) with layered orthorhombic structure grown by physical vapor deposition (PVD) have been investigated from the points of view of device and material. Optimal responsivity and gain for single-NW photodetector are at 7,900 A W-1 and 30,000, respectively. Intrinsic photoconduction (PC) efficiency (i.e., normalized gain) of the PVD-grown V2O5 NWs is two orders of magnitude higher than that of the V2O5 counterpart prepared by hydrothermal approach. In addition, bulk and surface-controlled PC mechanisms have been observed respectively by above- and below-bandgap excitations. The coexistence of hole trapping and oxygen sensitization effects in this layered V2O5 nanostructure is proposed, which is different from conventional metal oxide systems, such as ZnO, SnO2, TiO2, and WO3.

3.
Opt Express ; 21(10): 11965-72, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736418

RESUMO

The α-phase Bi(2)O(3) (α-Bi(2)O(3)) is a crucial and potential visiblelight photocatalyst material needless of intentional doping on accommodating band gap. The understanding on fundamental optical property of α-Bi(2)O(3) is important for its extended applications. In this study, bismuth oxide nanowires with diameters from tens to hundreds nm have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si substrate. High-resolution transmission electron microscopy and Raman measurement confirm α phase of monoclinic structure for the as-grown nanowires. The axial direction for the as-grown nanowires was along < 122 >. The band-edge structure of α-Bi(2)O(3) has been probed experimentally by thermoreflectance (TR) spectroscopy. The direct band gap was determined accurately to be 2.91 eV at 300 K. Temperaturedependent TR measurements of 30-300 K were carried out to evaluate temperature-energy shift and line-width broadening effect for the band edge of α-Bi(2)O(3) thin-film nanowires. Photoluminescence (PL) experiments at 30 and 300 K were carried out to identify band-edge emission as well as defect luminescence for the α-Bi(2)O(3) nanowires. On the basis of experimental analyses of TR and PL, optical characteristics of direct band edge of α-Bi(2)O(3) nanowires have thus been realized.


Assuntos
Bismuto/química , Medições Luminescentes/métodos , Nanofios/química , Nanofios/ultraestrutura , Teste de Materiais
4.
Opt Express ; 18(16): 16360-9, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20721023

RESUMO

Nanostructure of beta-Ga(2)O(3) is wide-band-gap material with white-light-emission function because of its abundance in gap states. In this study, the gap states and near-band-edge transitions in beta-Ga(2)O(3) nanostrips have been characterized using temperature-dependent thermoreflectance (TR) measurements in the temperature range between 30 and 320 K. Photoluminescence (PL) measurements were carried to identify the gap-state transitions in the beta-Ga(2)O(3) nanostrips. Experimental analysis of the TR spectra revealed that the direct gap (E(0)) of beta-Ga(2)O(3) is 4.656 eV at 300 K. There are a lot of gap-state and near-band-edge (GSNBE) transitions denoted as E(D3), E(W1), E(W2), E(W3), E(D2), EDBex, E(DB), E(D1), E(0), and E(0)' can be detected in the TR and PL spectra at 30 K. Transition origins for the GSNBE features in the beta-Ga(2)O(3) nanostrips are respectively evaluated. Temperature dependences of transition energies of the GSNBE transitions in the beta-Ga(2)O(3) nanostrips are analyzed. The probable band scheme for the GSNBE transitions in the beta-Ga(2)O(3) nanostrips is constructed.


Assuntos
Simulação por Computador , Luz , Nanoestruturas/química , Temperatura , Luminescência
5.
Nano Lett ; 7(6): 1521-5, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17530910

RESUMO

We have measured the time-resolved, X-ray excited optical luminescence spectra from two types of MgxZn(1-x)O core-shell, heterostructured nanowires: type I, with a small x, wurtzite core, encased in a larger x, wurtzite sheath; and type II, with a wurtzite core (x approximately 0), encased in a rock-salt sheath (x>0.62). By monitoring the X-ray energy dependence of the various luminescence peaks, we have determined the local environment of the sites where these peaks originate.


Assuntos
Cristalização/métodos , Medições Luminescentes/instrumentação , Óxido de Magnésio/química , Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Óxido de Zinco/química , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Medições Luminescentes/métodos , Substâncias Macromoleculares/química , Óxido de Magnésio/efeitos da radiação , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Nanotubos/efeitos da radiação , Tamanho da Partícula , Óxido de Zinco/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA