Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277388

RESUMO

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective EHR cohort study of 1,603,767 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 65 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There was a significant association between six categories and newly diagnosed anxiety, mood, and psychotic disorders, with odds ratios highest for cardiovascular (1.35, 1.27-1.42) PASC-AMs. Secondary analysis revealed that the proportions of 95 individual clinical features significantly differed between patients diagnosed with different psychiatric disorders. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings. FundingNCATS U24 TR002306

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267071

RESUMO

BackgroundCOVID-19 has been shown to increase the risk of adverse mental health consequences. A recent electronic health record (EHR)-based observational study showed an almost two-fold increased risk of new-onset mental illness in the first 90 days following a diagnosis of acute COVID-19. MethodsWe used the National COVID Cohort Collaborative, a harmonized EHR repository with 2,965,506 COVID-19 positive patients, and compared cohorts of COVID-19 patients with comparable controls. Patients were propensity score-matched to control for confounding factors. We estimated the hazard ratio (COVID-19:control) for new-onset of mental illness for the first year following diagnosis. We additionally estimated the change in risk for new-onset mental illness between the periods of 21-120 and 121-365 days following infection. FindingsWe find a significant increase in incidence of new-onset mental disorders in the period of 21-120 days following COVID-19 (3.8%, 3.6-4.0) compared to patients with respiratory tract infections (3%, 2.8-3.2). We further show that the risk for new-onset mental illness decreases over the first year following COVID-19 diagnosis compared to other respiratory tract infections and demonstrate a reduced (non-significant) hazard ratio over the period of 121-365 days following diagnosis. Similar findings are seen for new-onset anxiety disorders but not for mood disorders. InterpretationPatients who have recovered from COVID-19 are at an increased risk for developing new-onset mental illness, especially anxiety disorders. This risk is most prominent in the first 120 days following infection. FundingNational Center for Advancing Translational Sciences (NCATS).

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259416

RESUMO

ImportanceSince late 2019, the novel coronavirus SARS-CoV-2 has given rise to a global pandemic and introduced many health challenges with economic, social, and political consequences. In addition to a complex acute presentation that can affect multiple organ systems, there is mounting evidence of various persistent long-term sequelae. The worldwide scientific community is characterizing a diverse range of seemingly common long-term outcomes associated with SARS-CoV-2 infection, but the underlying assumptions in these studies vary widely making comparisons difficult. Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 infection (PASC or "long COVID"), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations of long COVID. ObservationsWe identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts of individuals three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to Human Phenotype Ontology (HPO) terms. Conclusions and RelevancePatients and clinicians often use different terms to describe the same symptom or condition. Addressing the heterogeneous and inconsistent language used to describe the clinical manifestations of long COVID combined with the lack of standardized terminologies for long COVID will provide a necessary foundation for comparison and meta-analysis of different studies. Translating long COVID manifestations into computable HPO terms will improve the analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared or pooled more effectively. Furthermore, mapping lay terminology to HPO for long COVID manifestations will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, which may improve the stratification and thereby diagnosis and treatment of long COVID.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255438

RESUMO

BackgroundNon-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. MethodsA 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of COVID-19 inpatients was constructed by matching cases (treated with NSAIDs) and controls (not treated) from 857,061 patients with COVID-19. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. ResultsLogistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. ConclusionsStudy interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our findings are the largest EHR-based analysis of the effect of NSAIDs on outcome in COVID-19 patients to date. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253896

RESUMO

Since late 2019, the novel coronavirus SARS-CoV-2 has introduced a wide array of health challenges globally. In addition to a complex acute presentation that can affect multiple organ systems, increasing evidence points to long-term sequelae being common and impactful. The worldwide scientific community is forging ahead to characterize a wide range of outcomes associated with SARS-CoV-2 infection; however the underlying assumptions in these studies have varied so widely that the resulting data are difficult to compareFormal definitions are needed in order to design robust and consistent studies of Long COVID that consistently capture variation in long-term outcomes. Even the condition itself goes by three terms, most widely "Long COVID", but also "COVID-19 syndrome (PACS)" or, "post-acute sequelae of SARS-CoV-2 infection (PASC)". In the present study, we investigate the definitions used in the literature published to date and compare them against data available from electronic health records and patient-reported information collected via surveys. Long COVID holds the potential to produce a second public health crisis on the heels of the pandemic itself. Proactive efforts to identify the characteristics of this heterogeneous condition are imperative for a rigorous scientific effort to investigate and mitigate this threat.

6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-914347

RESUMO

The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, researchers have turned to more non-traditional sources of clinical data to characterize the disease in near-real time, study the societal implications of interventions, as well as the sequelae that recovered COVID-19 cases present. However, manually curated social media datasets are difficult to come by due to the expensive costs of manual annotation and the efforts needed to identify the correct texts. When datasets are available, they are usually very small and their annotations don’t generalize well over time or to larger sets of documents. As part of the 2021 Biomedical Linked Annotation Hackathon, we release our dataset of over 120 million automatically annotated tweets for biomedical research purposes. Incorporating best-practices, we identify tweets with potentially high clinical relevance. We evaluated our work by comparing several SpaCy-based annotation frameworks against a manually annotated gold-standard dataset. Selecting the best method to use for automatic annotation, we then annotated 120 million tweets and released them publicly for future downstream usage within the biomedical domain.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-254839

RESUMO

Integrated, up-to-date data about SARS-CoV-2 and coronavirus disease 2019 (COVID-19) is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community varies drastically for different tasks - the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates biomedical data to produce knowledge graphs (KGs) for COVID-19 response. This KG framework can also be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics. BIGGER PICTUREAn effective response to the COVID-19 pandemic relies on integration of many different types of data available about SARS-CoV-2 and related viruses. KG-COVID-19 is a framework for producing knowledge graphs that can be customized for downstream applications including machine learning tasks, hypothesis-based querying, and browsable user interface to enable researchers to explore COVID-19 data and discover relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...