Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877764

RESUMO

More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer's disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities' influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Humanos , Bases de Conhecimento , Proteína Amiloide A Sérica
3.
Sci Rep ; 11(1): 14344, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253812

RESUMO

T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases. To support T-cell research, we developed the DES-Tcell knowledgebase (KB). This KB incorporates text- and data-mined information that can expedite retrieval and exploration of T-cell relevant information from the large volume of published T-cell-related research. This KB enables exploration of data through concepts from 15 topic-specific dictionaries, including immunology-related genes, mutations, pathogens, and pathways. We developed three case studies using DES-Tcell, one of which validates effective retrieval of known associations by DES-Tcell. The second and third case studies focuses on concepts that are common to Grave's disease (GD) and Hashimoto's thyroiditis (HT). Several reports have shown that up to 20% of GD patients treated with antithyroid medication develop HT, thus suggesting a possible conversion or shift from GD to HT disease. DES-Tcell found miR-4442 links to both GD and HT, and that miR-4442 possibly targets the autoimmune disease risk factor CD6, which provides potential new knowledge derived through the use of DES-Tcell. According to our understanding, DES-Tcell is the first KB dedicated to exploring T-cell-relevant information via literature-mining, data-mining, and topic-specific dictionaries.


Assuntos
Doença de Graves/metabolismo , Linfócitos T/metabolismo , Doenças Autoimunes/metabolismo , Doença de Hashimoto/metabolismo , Humanos
4.
Oxid Med Cell Longev ; 2020: 5904315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308806

RESUMO

Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.


Assuntos
Doença/genética , PubMed , RNA/metabolismo , Humanos , Oxirredução , Projetos de Pesquisa
5.
Oxid Med Cell Longev ; 2019: 1769437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223421

RESUMO

In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.


Assuntos
Biologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
6.
Sci Rep ; 8(1): 13359, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190574

RESUMO

During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype. However, mutations are often the cause of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. We approached this problem by analyzing a vast amount of published information linking mutations to disease states. Based on such information, we developed the DES-Mutation knowledgebase which allows for exploration of not only mutation-disease links, but also links between mutations and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially novel information involving disease mutations. To our knowledge, this is the first mutation-disease knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of different mutation types and their associations with terms from multiple thematic dictionaries.


Assuntos
Doenças Genéticas Inatas/genética , Bases de Conhecimento , Mutação , Software , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...