Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37448049

RESUMO

Already for some decades lateral flow assays (LFAs) are 'common use' devices in our daily life. Also, for forensic use LFAs are developed, such as for the analysis of illicit drugs and DNA, but also for the detection of explosives and body fluid identification. Despite their advantages, including ease-of-use, LFAs are not yet frequently applied at a crime scene. This review describes (academic) developments of LFAs for forensic applications, focusing on biological and chemical applications, whereby the main advantages and disadvantages of LFAs for the different forensic applications are summarized. Additionally, a critical review is provided, discussing why LFAs are not frequently applied within the forensic field and highlighting the steps that are needed to bring LFAs to the forensic market.


Assuntos
Líquidos Corporais , Drogas Ilícitas , Medicina Legal , Bioensaio , DNA
2.
Microsyst Nanoeng ; 9: 39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007606

RESUMO

The particles of heterogeneous catalysts differ greatly in size, morphology, and most importantly, in activity. Studying these catalyst particles in batch typically results in ensemble averages, without any information at the level of individual catalyst particles. To date, the study of individual catalyst particles has been rewarding but is still rather slow and often cumbersome1. Furthermore, these valuable in-depth studies at the single particle level lack statistical relevance. Here, we report the development of a droplet microreactor for high-throughput fluorescence-based measurements of the acidities of individual particles in fluid catalytic cracking (FCC) equilibrium catalysts (ECAT). This method combines systematic screening of single catalyst particles with statistical relevance. An oligomerization reaction of 4-methoxystyrene, catalyzed by the Brønsted acid sites inside the zeolite domains of the ECAT particles, was performed on-chip at 95 °C. The fluorescence signal generated by the reaction products inside the ECAT particles was detected near the outlet of the microreactor. The high-throughput acidity screening platform was capable of detecting ~1000 catalyst particles at a rate of 1 catalyst particle every 2.4 s. The number of detected catalyst particles was representative of the overall catalyst particle population with a confidence level of 95%. The measured fluorescence intensities showed a clear acidity distribution among the catalyst particles, with the majority (96.1%) showing acidity levels belonging to old, deactivated catalyst particles and a minority (3.9%) exhibiting high acidity levels. The latter are potentially of high interest, as they reveal interesting new physicochemical properties indicating why the particles were still highly acidic and reactive.

3.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772114

RESUMO

This systematic review describes and discusses three commercially available integrated systems for forensic DNA analysis, i.e., ParaDNA, RapidHIT, and ANDE. A variety of aspects, such as performance, time-to-result, ease-of-use, portability, and costs (per analysis run) of these three (modified) rapid DNA analysis systems, are considered. Despite their advantages and developmental progress, major steps still have to be made before rapid systems can be broadly applied at crime scenes for full DNA profiling. Aspects in particular that need (further) improvement are portability, performance, the possibility to analyze a (wider) variety of (complex) forensic samples, and (cartridge) costs. Moreover, steps forward regarding ease-of-use and time-to-result will benefit the broader use of commercial rapid DNA systems. In fact, it would be a profit if rapid DNA systems could be used for full DNA profile generation as well as indicative analyses that can give direction to forensic investigators which will speed up investigations.


Assuntos
Genética Forense , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Impressões Digitais de DNA , DNA/genética , DNA/análise
5.
ACS Appl Nano Mater ; 5(10): 15847-15854, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36338331

RESUMO

High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1-2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through "concave" corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.

6.
Nanoscale Res Lett ; 17(1): 100, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245035

RESUMO

Convex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation. The combination of pre-shaping and oxidation obtains high-density, high aspect ratio, periodic, and vertically aligned sharp single-crystalline silicon nanocones at the wafer-scale. The homogeneity of the presented nanocones is unprecedented and may give rise to applications where numerical modeling and experiments are combined without assumptions about morphology of the nanocone. The silicon nanocones are organized in a square periodic lattice, with 250 nm pitch giving arrays containing 1.6 billion structures per square centimeter. The nanocone arrays were several mm2 in size and located centimeters apart across a 100-mm-diameter single-crystalline silicon (100) substrate. For single nanocones, tip radii of curvature < 3 nm were measured. The silicon nanocones were vertically aligned, baring a height variation of < 5 nm (< 1%) for seven adjacent nanocones, whereas the height inhomogeneity is < 80 nm (< 16%) across the full wafer scale. The height inhomogeneity can be explained by inhomogeneity present in the radii of the initial columnar polymer mask. The presented method might also be applicable to silicon micro- and nanowires derived through other top-down or bottom-up methods because of the combination of ion beam etching pre-shaping and thermal oxidation sharpening. A novel method is presented where argon ion beam etching and thermal oxidation sharpening are combined to tailor a high-density single-crystalline silicon nanowire array into a vertically aligned single-crystalline silicon nanocones array with < 3 nm apex radius of curvature tips, at the wafer scale.

7.
Biosens Bioelectron X ; 11: 100158, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35619623

RESUMO

Since the start of the COVID-19 pandemic, 10 manufacturers of molecular tests for SARS-CoV-2 have received Emergency Use Authorizations from the U.S. Food and Drug Administration for point-of-care or over the counter use. In this review, the working principle of these tests is described as well as the relevant characteristics (e.g. time-to-result and specimen type). The analytical (e.g. analytical sensitivity) and clinical performance (positive and negative percent agreement) and useability characteristics (e.g. cost, reusability and throughput) of these tests are compared and critically reviewed. Also details for relevant respiratory multiplex assays of these 10 manufacturers are discussed. Critical review of scientific literature on these authorized tests revealed that for many of these tests publications are almost or completely absent, with the exception of two systems. The Xpert Xpress has been thoroughly investigated and good performance has been reported, whereas ID NOW is also well-represented in literature, but has relatively low sensitivity.

8.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

9.
Faraday Discuss ; 229: 267-280, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666611

RESUMO

Since inter- and intra-particle heterogeneities in catalyst particles are more the rule than the exception, it is advantageous to perform high-throughput screening for the activity of single catalyst particles. A multiphase system (gas/liquid/solid) is developed, where droplet-based microfluidics and optical detection are combined for the analysis of single catalyst particles by safely performing a hydrogenation study on in-house synthesized hollow Pd/SiO2 catalyst microparticles, in a polydimethylsiloxane (PDMS) microreactor. A two-phase segmented flow system of particle-containing droplets is combined with a parallel gas-reactant channel separated from the flow channel by a 50 µm thick gas permeable PDMS wall. In this paper, the developed microreactor system is showcased by monitoring the Pd-catalyzed hydrogenation of methylene blue. A discoloration of blue to brown visualizes the hydrogenation activity happening in a high-throughput fashion on the single Pd/SiO2 spherical catalyst microparticles, which are encapsulated in 50 nL-sized droplets. By measuring the reagent concentration at various spots along the length of the channel the reaction time can be determined, which is proportional to the residence time in the channel. The developed experimental platform opens new possibilities for single catalyst particle diagnostics in a multiphase environment.

10.
Mikrochim Acta ; 187(4): 247, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32219540

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror-like micro-pyramid structures extended in the z-direction up to 3.7 µm (G0 type substrate) or 7.7 µm (G1 type substrate), prepared by Si-based microfabrication technologies, for trace detection of organophosphorous pesticides, using paraoxon-methyl as probe molecule. The average relative standard deviation (RSD) for the SERS intensity of the peak displayed at 1338 cm-1 recorded over a centimetre scale area of the substrate is below 13% for pesticide concentrations in the range 10-6 to 10-15 mol L-1. This data underlies the spatial uniformity of the SERS response provided by the microfabrication approach. According to finite-difference time-domain (FDTD) simulations, such remarkable feature is mainly due to the contribution on electromagnetic field enhancement of edge plasmon polaritons (EPPs), propagating along the pyramid edges where the pesticide molecules are preferentially adsorbed. Graphical abstract.


Assuntos
Manufaturas , Paraoxon/análogos & derivados , Praguicidas/análise , Prata/química , Adsorção , Paraoxon/análise , Paraoxon/química , Praguicidas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
11.
Biosensors (Basel) ; 9(3)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277382

RESUMO

Microfluidic devices offer important benefits for forensic applications, in particular for fast tests at a crime scene. A large portion of forensic applications require microfluidic chip material to show compatibility with biochemical reactions (such as amplification reactions), and to have high transparency in the visible region and high chemical resistance. Also, preferably, manufacturing should be simple. The characteristic properties of cyclic olefin copolymer (COC) fulfills these requirements and offers new opportunities for the development of new forensic tests. In this work, the versatility of COC as material for lab-on-a-chip (LOC) systems in forensic applications has been explored by realizing two proof-of-principle devices. Chemical resistance and optical transparency were investigated for the development of an on-chip presumptive color test to indicate the presence of an illicit substance through applying absorption spectroscopy. Furthermore, the compatibility of COC with a DNA amplification reaction was verified by performing an on-chip multiple displacement amplification (MDA) reaction.


Assuntos
Cicloparafinas/química , Medicina Legal/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Polímeros/química , Adsorção , DNA/química , Humanos , Análise Espectral
12.
ACS Nano ; 13(6): 6782-6789, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189059

RESUMO

We found that continuous films of gold (Au) on oxidized silicon (SiO2) substrates, upon treatment with ultraviolet (UV)-ozone, exhibit strong adhesion to the SiO2 support. Importantly, the enhancement is independent of micro- or nanostructuring of such nanometer-thick films. Deposition of a second Au layer on top of the pretreated Au layer makes the adhesion stable for at least 5 months in environmental air. Using this treatment method enables us to large-scale fabricate various SiO2-supported Au structures at various thicknesses with dimensions spanning from a few hundreds of nanometers to a few micrometers, without the use of additional adhesion layers. We explain the observed adhesion improvement as polarization-induced increased strength of Auδ-Siδ+ bonds at the Au-SiO2 interface due to the formation of a gold oxide monolayer on the Au surface by the UV-ozone treatment. Our simple and enabling method thus provides opportunities for patterning Au micro/nanostructures on SiO2 substrates without an intermediate metallic adhesion layer, which is critical for biosensing and nanophotonic applications.

13.
Micromachines (Basel) ; 9(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30393321

RESUMO

The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications.

14.
Micromachines (Basel) ; 9(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30393336

RESUMO

One of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect. The SERS performance of Au monolayer-over-mirror configuration is demonstrated for the label-free real-time gas phase detection of 1.2 ppmV of dimethyl methylphosphonate (DMMP), a common surrogate of G-nerve agents. Thanks to the hot spot accumulation on the corners and tips of the 3D-fractal microstructures, the main vibrational modes of DMMP are clearly identified underlying the spectral selectivity of the SERS technique. The Raman acquisition conditions for SERS detection in gas phase have to be carefully chosen to avoid photo-thermal effects on the irradiated area.

15.
Electrophoresis ; 39(21): 2642-2654, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101986

RESUMO

DNA sequencing, starting with Sanger's chain termination method in 1977 and evolving into the next generation sequencing (NGS) techniques of today that employ massively parallel sequencing (MPS), has become essential in application areas such as biotechnology, virology, and medical diagnostics. Reflected by the growing number of articles published over the last 2-3 years, these techniques have also gained attention in the forensic field. This review contains a brief description of first, second, and third generation sequencing techniques, and focuses on the recent developments in human DNA analysis applicable in the forensic field. Relevance to the forensic analysis is that besides generation of standard STR-profiles, DNA repeats can also be sequenced to look for polymorphisms. Furthermore, additional SNPs can be sequenced to acquire information on ancestry, paternity or phenotype. The current MPS systems are also very helpful in cases where only a limited amount of DNA or highly degraded DNA has been secured from a crime scene. If enough autosomal DNA is not present, mitochondrial DNA can be sequenced for maternal lineage analysis. These developments clearly demonstrate that the use of NGS will grow into an indispensable tool for forensic science.


Assuntos
DNA/genética , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Impressões Digitais de DNA/métodos , Humanos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
16.
J Forensic Sci ; 63(5): 1492-1499, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29890011

RESUMO

The extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples. The morphology and absorption capacity of swabs is studied. Extraction and recovery efficiencies are determined and compared to the maximum theoretical efficiency. The results indicate that a substantial part of DNA is not extracted from the swab and some types of swab seem to bind effectively with DNA. The efficiency of the different types of swab never exceeds 50%. The nylon flocked 4N6FLOQSwab used for buccal sampling performs the best.


Assuntos
DNA/isolamento & purificação , Manejo de Espécimes/instrumentação , Impressões Digitais de DNA , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Mucosa Bucal/química , Saliva/química
17.
ACS Energy Lett ; 3(5): 1086-1092, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29780886

RESUMO

Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.

18.
Microsyst Nanoeng ; 4: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057894

RESUMO

Periodic noble metal nanoparticles offer a wide spectrum of applications including chemical and biological sensors, optical devices, and model catalysts due to their extraordinary properties. For sensing purposes and catalytic studies, substrates made of glass or fused-silica are normally required as supports, without the use of metallic adhesion layers. However, precise patterning of such uniform arrays of silica-supported noble metal nanoparticles, especially at sub-100 nm in diameter, is challenging without adhesion layers. In this paper, we report a robust method to large-scale fabricate highly ordered sub-20 nm noble metal nanoparticles, i.e., gold and platinum, supported on silica substrates without adhesion layers, combining displacement Talbot lithography (DTL) with dry-etching techniques. Periodic photoresist nanocolumns at diameters of ~110 nm are patterned on metal-coated oxidized silicon wafers using DTL, and subsequently transferred at a 1:1 ratio into anti-reflection layer coating (BARC) nanocolumns with the formation of nano-sharp tips, using nitrogen plasma etching. These BARC nanocolumns are then used as a mask for etching the deposited metal layer using inclined argon ion-beam etching. We find that increasing the etching time results in cone-shaped silica features with metal nanoparticles on the tips at diameters ranging from 100 nm to sub-30 nm, over large areas of 3×3 cm2. Moreover, subsequent annealing these sub-30 nm metal nanoparticle arrays at high-temperature results in sub-20 nm metal nanoparticle arrays with ~1010 uniform particles.

19.
ACS Appl Bio Mater ; 1(5): 1294-1300, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996233

RESUMO

Soft substrates decorated with micropillar arrays are known to be sensitive to deflection due to capillary action. In this work, we demonstrate that micropillared epoxy surfaces are sensitive to single drops of bacterial suspensions. The micropillars can show significant deformations upon evaporation, just as capillary action does in soft substrates. The phenomenon has been studied with five bacterial strains: S. epidermidis, L. sakei, P. aeruginosa, E. coli, and B. subtilis. The results reveal that only droplets containing motile microbes with flagella stimulate micropillar bending, which leads to significant distortions and pillar aggregations forming dimers, trimers, and higher order clusters. Such deformation is manifested in characteristic patterns that are left on the microarrayed surface following evaporation and can be easily identified even by the naked eye. Our findings could lay the ground for the design and fabrication of mechanically responsive substrates, sensitive to specific types of microorganisms.

20.
Biosensors (Basel) ; 7(4)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206205

RESUMO

A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 µM by using luminol and 4-iodophenol as enhancer agent.


Assuntos
Técnicas Biossensoriais , Ensaios Enzimáticos/métodos , Vidro , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Microfluídica , Processos Fotoquímicos , Silício , Desenho de Equipamento , Medições Luminescentes/métodos , Microfluídica/instrumentação , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...