Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 7: 9, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22369234

RESUMO

BACKGROUND: The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF) synapse. RESULTS: Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. CONCLUSION: These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Espinhas Dendríticas/genética , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Neuropeptídeos/genética , Sinapses/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Espinhas Dendríticas/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(1): 367-72, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173224

RESUMO

The establishment of neuronal circuits relies on the stabilization of functionally appropriate connections and the elimination of inappropriate ones. Here we report that postsynaptic AMPA receptors play a critical role in regulating the stability of glutamatergic synapses. Removal of surface AMPA receptors leads to a decrease in the number and stability of excitatory presynaptic inputs, whereas overexpression increases synapse number and stability. Furthermore, overexpression of AMPA receptors along with Neuroligin-1 in 293T cells is sufficient to stabilize presynaptic inputs from cortical neurons onto heterologous cells. The stabilization of presynaptic inputs by AMPA receptors is not dependent on receptor-mediated current and instead relies on structural interactions mediated by the N-terminal domain of the glutamate receptor 2 (GluR2) subunit. These observations indicate that transsynaptic signaling mediated by the extracellular domain of GluR2 regulates the stability of presynaptic terminals.


Assuntos
Espinhas Dendríticas/fisiologia , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Espinhas Dendríticas/metabolismo , Eletrofisiologia , Humanos , Imuno-Histoquímica , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Neuron ; 64(6): 799-806, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064388

RESUMO

We identify the leucine-rich repeat transmembrane protein LRRTM2 as a key regulator of excitatory synapse development and function. LRRTM2 localizes to excitatory synapses in transfected hippocampal neurons, and shRNA-mediated knockdown of LRRTM2 leads to a decrease in excitatory synapses without affecting inhibitory synapses. LRRTM2 interacts with PSD-95 and regulates surface expression of AMPA receptors, and lentivirus-mediated knockdown of LRRTM2 in vivo decreases the strength of evoked excitatory synaptic currents. Structure-function studies indicate that LRRTM2 induces presynaptic differentiation via the extracellular LRR domain. We identify Neurexin1 as a receptor for LRRTM2 based on affinity chromatography. LRRTM2 binds to both Neurexin 1alpha and Neurexin 1beta, and shRNA-mediated knockdown of Neurexin1 abrogates LRRTM2-induced presynaptic differentiation. These observations indicate that an LRRTM2-Neurexin1 interaction plays a critical role in regulating excitatory synapse development.


Assuntos
Hipocampo/embriologia , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de Superfície Celular/metabolismo , Sinapses/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Moléculas de Adesão de Célula Nervosa/genética , Vias Neurais/embriologia , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Técnicas de Cultura de Órgãos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Interferência de RNA , Ratos , Receptores de AMPA/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Sinapses/ultraestrutura , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA