Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169567, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145686

RESUMO

The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos , Genes Bacterianos , França , Aerossóis
2.
Microbiome ; 11(1): 271, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053218

RESUMO

BACKGROUND: Climate change has accelerated the occurrence and severity of heatwaves in the Mediterranean Sea and poses a significant threat to the octocoral species that form the foundation of marine animal forests (MAFs). As coral health intricately relies on the symbiotic relationships established between corals and microbial communities, our goal was to gain a deeper understanding of the role of bacteria in the observed tissue loss of key octocoral species following the unprecedented heatwaves in 2022. RESULTS: Using amplicon sequencing and taxon-specific qPCR analyses, we unexpectedly found that the absolute abundance of the major bacterial symbionts, Spirochaetaceae (C. rubrum) and Endozoicomonas (P. clavata), remained, in most cases, unchanged between colonies with 0% and 90% tissue loss. These results suggest that the impairment of coral health was not due to the loss of the main bacterial symbionts. However, we observed a significant increase in the total abundance of bacterial opportunists, including putative pathogens such as Vibrio, which was not evident when only their relative abundance was considered. In addition, there was no clear relation between bacterial symbiont loss and the intensity of thermal stress, suggesting that factors other than temperature may have influenced the differential response of octocoral microbiomes at different sampling sites. CONCLUSIONS: Our results indicate that tissue loss in octocorals is not directly caused by the decline of the main bacterial symbionts but by the proliferation of opportunistic and pathogenic bacteria. Our findings thus underscore the significance of considering both relative and absolute quantification approaches when evaluating the impact of stressors on coral microbiome as the relative quantification does not accurately depict the actual changes in the microbiome. Consequently, this research enhances our comprehension of the intricate interplay between host organisms, their microbiomes, and environmental stressors, while offering valuable insights into the ecological implications of heatwaves on marine animal forests. Video Abstract.


Assuntos
Antozoários , Microbiota , Animais , Bactérias/genética , Antozoários/microbiologia , Temperatura , Florestas , Recifes de Corais
3.
Environ Microbiome ; 18(1): 70, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580830

RESUMO

Marine heat waves (MHWs) have increased in frequency and intensity worldwide, causing mass mortality of benthic organisms and loss of biodiversity in shallow waters. The Mediterranean Sea is no exception, with shallow populations of habitat-forming octocorals facing the threat of local extinction. The mesophotic zone, which is less affected by MHWs, may be of ecological importance in conservation strategies for these species. However, our understanding of the response of mesophotic octocoral holobionts to changes in seawater temperature remains limited. To address this knowledge gap, we conducted a study on an iconic Mediterranean octocoral, the red coral Corallium rubrum sampled at 60 m depth and 15 °C. We exposed the colonies to temperatures they occasionally experience (18 °C) and temperatures that could occur at the end of the century if global warming continues (21 °C). We also tested their response to extremely cold and warm temperatures (12 °C and 24 °C). Our results show a high tolerance of C. rubrum to a two-month long exposure to temperatures ranging from 12 to 21 °C as no colony showed signs of tissue loss, reduced feeding ability, stress-induced gene expression, or disruption of host-bacterial symbioses. At 24 °C, however, we measured a sharp decrease in the relative abundance of Spirochaetaceae, which are the predominant bacterial symbionts under healthy conditions, along with a relative increase in Vibrionaceae. Tissue loss and overexpression of the tumor necrosis factor receptor 1 gene were also observed after two weeks of exposure. In light of ongoing global warming, our study helps predict the consequences of MHWs on mesophotic coralligenous reefs and the biodiversity that depends on them.

4.
Biomolecules ; 12(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327556

RESUMO

Although Next-Generation Sequencing techniques have increased our access to the soil microbiome, each step of soil metagenomics presents inherent biases that prevent the accurate definition of the soil microbiome and its ecosystem function. In this study, we compared the effects of DNA extraction and sequencing depth on bacterial richness discovery from two soil samples. Four DNA extraction methods were used, and sequencing duplicates were generated for each DNA sample. The V3-V4 region of the 16S rRNA gene was sequenced to determine the taxonomical richness measured by each method at the amplicon sequence variant (ASV) level. Both the overall functional richness and antibiotic resistance gene (ARG) richness were evaluated by metagenomics sequencing. Despite variable DNA extraction methods, sequencing depth had a greater influence on bacterial richness discovery at both the taxonomical and functional levels. Sequencing duplicates from the same sample provided access to different portions of bacterial richness, and this was related to differences in the sequencing depth. Thus, the sequencing depth introduced biases in the comparison of DNA extraction methods. An optimisation of the soil metagenomics workflow is needed in order to sequence at a sufficient and equal depth. This would improve the accuracy of metagenomic comparisons and soil microbiome profiles.


Assuntos
Microbiota , Solo , Bactérias/genética , DNA , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
5.
Appl Environ Microbiol ; 88(6): e0234021, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108095

RESUMO

Gorgonians are important habitat-providing species in the Mediterranean Sea, but their populations are declining due to microbial diseases and repeated mass mortality events caused by summer heat waves. Elevated seawater temperatures may impact the stress tolerance and disease resistance of gorgonians and lead to disturbances in their microbiota. However, our knowledge of the biological response of the gorgonian holobiont (i.e., the host and its microbiota) to thermal stress remains limited. Here, we investigated how the holobiont of two gorgonian species (Paramuricea clavata and Eunicella cavolini) are affected throughout a 7-week thermal stress event by following both the corals' physiology and the composition of their bacterial communities. We found that P. clavata was more sensitive to elevated seawater temperatures than E. cavolini, showing a greater loss in energy reserves, reduced feeding ability, and partial mortality. This lower thermotolerance may be linked to the ∼20× lower antioxidant defense capacity in P. clavata compared with E. cavolini. In the first 4 weeks of thermal stress, we also observed minor shifts in the microbiota of both species, suggesting that the microbiota likely plays a limited role in thermal acclimation of the holobiont. However, major stochastic changes occurred later on in some colonies, which were of a transient nature in E. cavolini, but were linked to partial colony mortality in P. clavata. Overall, our results show significant, but differential, effects of thermal stress on the holobionts of both E. cavolini and P. clavata and predict potentially severe impacts on gorgonian populations under future climate scenarios. IMPORTANCE In the Mediterranean Sea, the tree-shaped gorgonian corals form large forests that provide a place to live for many species. Because of this important ecological role, it is crucial to understand how common habitat-forming gorgonians, like Eunicella cavolini and Paramuricea clavata, are affected by high seawater temperatures that are expected in the future due to climate change. We found that both species lost biomass, but P. clavata was more affected, being also unable to feed and showing signs of mortality. The microbiota of both gorgonians also changed substantively under high temperatures. Although this could be linked to partial colony mortality in P. clavata, the changes were temporary in E. cavolini. The overall higher resistance of E. cavolini may be related to its much higher antioxidant defense levels than P. clavata. Climate change may thus have severe impacts on gorgonian populations and the habitats they provide.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Bactérias/genética , Mar Mediterrâneo , Água do Mar/microbiologia
6.
Curr Opin Biotechnol ; 74: 110-121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861476

RESUMO

Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.


Assuntos
Antozoários , Recifes de Corais , Animais , Biônica , Ecossistema , Fotossíntese
7.
Front Microbiol ; 11: 980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508790

RESUMO

We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl-, TC/OC, SO4 2-, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO4 2-, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.

8.
Sci Total Environ ; 716: 137129, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32044476

RESUMO

Microorganisms are ubiquitous in the atmosphere. Global investigations on the geographical and temporal distribution of airborne microbial communities are critical for identifying the sources and the factors shaping airborne communities. At mid-latitude sites, a seasonal shift in both the concentration and diversity of airborne microbial communities has been systematically observed in the planetary boundary layer. While the factors suspected of affecting this seasonal change were hypothesized (e.g., changes in the surface conditions, meteorological parameters and global air circulation), our understanding on how these factors influence the temporal variation of airborne microbial communities, especially at the microbial taxon level, remains limited. Here, we investigated the distribution of both airborne bacterial and fungal communities on a weekly basis over more than one year at the mid-latitude and continental site of puy de Dôme (France; +1465 m altitude above sea level). The seasonal shift in microbial community structure was likely correlated to the seasonal changes in the characteristics of puy de Dôme's landscape (croplands and natural vegetation). The airborne microbial taxa that were the most affected by seasonal changes trended differently throughout the seasons in relation with their trophic mode. In addition, the windy and variable local meteorological conditions found at puy de Dôme were likely responsible for the intraseasonal variability observed in the composition of airborne microbial communities.


Assuntos
Microbiologia do Ar , Microbiota , Atmosfera , França , Estações do Ano
9.
Sci Rep ; 10(1): 2389, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024962

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 9(1): 14441, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595018

RESUMO

The atmosphere is an important route for transporting and disseminating microorganisms over short and long distances. Understanding how microorganisms are distributed in the atmosphere is critical due to their role in public health, meteorology and atmospheric chemistry. In order to determine the dominant processes that structure airborne microbial communities, we investigated the diversity and abundance of both bacteria and fungi from the PM10 particle size (particulate matter of 10 micrometers or less in diameter) as well as particulate matter chemistry and local meteorological characteristics over time at nine different meteorological stations around the world. The bacterial genera Bacillus and Sphingomonas as well as the fungal species Pseudotaeniolina globaosa and Cladophialophora proteae were the most abundant taxa of the dataset, although their relative abundances varied greatly based on sampling site. Bacterial and fungal concentration was the highest at the high-altitude and semi-arid plateau of Namco (China; 3.56 × 106 ± 3.01 × 106 cells/m3) and at the high-altitude and vegetated mountain peak Storm-Peak (Colorado, USA; 8.78 × 104 ± 6.49 × 104 cells/m3), respectively. Surrounding ecosystems, especially within a 50 km perimeter of our sampling stations, were the main contributors to the composition of airborne microbial communities. Temporal stability in the composition of airborne microbial communities was mainly explained by the diversity and evenness of the surrounding landscapes and the wind direction variability over time. Airborne microbial communities appear to be the result of large inputs from nearby sources with possible low and diluted inputs from distant sources.


Assuntos
Microbiologia do Ar , Vento , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Filogeografia
11.
Front Microbiol ; 10: 243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967843

RESUMO

The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, -omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...