Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 20(9): 1916-26, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11521817

RESUMO

Changing environmental conditions may influence the fate and bioavailability of lanthanides (part of the rare earth elements [Ln]) in estuaries. The aim of this study was to quantify the variation in estuarine lanthanide solid/water distribution, speciation, and bioaccumulation. The latter was studied in the amphipod Corophium volutator under field and laboratory conditions. Calculations with the chemical equilibrium model MINEQL+ indicate that dissolved lanthanides are complexed mainly to carbonates and dissolved organic matter. In the water phase, the relative abundance of the free ion, LnCO3, and humic complexes decreases from lanthanum to lutetium, whereas the relative abundance of Ln(CO3)2 increases. Cerium and europium anomalies were found in the water. Europium anomalies were also found in some biota. The biota sediment accumulation factors (BSAFs) decreased across the series from lanthanum to lutetium. Regression analysis revealed that alkalinity correlated negatively with lanthanide uptake. This suggests that increasing complexation reduced bioavailability under the prevailing conditions. The BSAFs did not depend on salinity or pH, which may simplify sediment-quality criteria for fresh versus saline waters. Field BSAFs were significantly lower than laboratory values for the same sediments, which is explained by adaptation of the organisms to lanthanides.


Assuntos
Crustáceos , Elementos da Série dos Lantanídeos/farmacocinética , Poluentes da Água/análise , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Sedimentos Geológicos/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Modelos Teóricos , Países Baixos , Distribuição Tecidual
2.
Arch Environ Contam Toxicol ; 23(1): 69-84, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1379031

RESUMO

The fate of the insecticide Dursban 4E (active ingredient chlorpyrifos) and its effect on crustaceans and insects was studied in indoor experimental freshwater ecosystems that intended to mimick drainage ditches. A single dose (simulating aerial drift) was applied to achieve nominal chlorpyrifos concentrations of 5 or 35 micrograms/L. Two experiments were performed, one in which all model ecosystems were dominated by the macrophyte Elodea nuttallii, and one using systems devoid of macrophytes. In macrophyte-dominated systems, Elodea vegetation adsorbed a large proportion of the dose applied and hampered the mixing of the insecticide in the water (at least up till day 8). Only a small proportion became incorporated in the sediment. In open water systems the insecticide was rapidly mixed in the water, and the sediment played a very significant role as sink for chlorpyrifos. In both Elodea-dominated and open water systems 50% of the dose applied had disappeared on day 8 post-treatment. The rate of disappearance of chlorpyrifos was relatively rapid in water and macrophytes, and relatively slow in the sediment. Of the arthropods in the zooplankton Cladocera were more susceptible than Copepoda. Significant effects (p less than or equal to 0.05) on Cladocera occurred relatively late in Elodea-dominated systems (in week 4 post-application) in contrast to open water systems (week 1), which is in accordance with the observed differences in the fate of chlorpyrifos. Daphnia pulex, D. longispina and Simocephalus vetulus recovered in the model ecosystems when chlorpyrifos concentrations were lower than 0.1-0.2 micrograms/L, which is in agreement with results of laboratory protocol tests performed with these cladocerans. Among the macroscopic Arthropoda the apparent order of susceptibility was amphipods greater than insects greater than isopods. The isopod Asellus aquaticus was more sensitive to the application of the insecticide than the closely related species Proasellus coxalis. In treated open water systems the latter even increased significantly in numbers. Cage experiments in the model ecosystems performed with several species of Arthropoda indicate that laboratory protocol tests may give a reasonable prediction of short-term direct effects of chlorpyrifos for the same species inhabiting more complex aquatic systems.


Assuntos
Clorpirifos/toxicidade , Crustáceos/efeitos dos fármacos , Água Doce/química , Insetos/efeitos dos fármacos , Modelos Biológicos , Plantas/metabolismo , Animais , Clorpirifos/farmacocinética , Crustáceos/metabolismo , Ecologia , Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA