Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Radiother Oncol ; 190: 109970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898437

RESUMO

MRI-guided radiotherapy (MRIgRT) is a highly complex treatment modality, allowing adaptation to anatomical changes occurring from one treatment day to the other (inter-fractional), but also to motion occurring during a treatment fraction (intra-fractional). In this vision paper, we describe the different steps of intra-fractional motion management during MRIgRT, from imaging to beam adaptation, and the solutions currently available both clinically and at a research level. Furthermore, considering the latest developments in the literature, a workflow is foreseen in which motion-induced over- and/or under-dosage is compensated in 3D, with minimal impact to the radiotherapy treatment time. Considering the time constraints of real-time adaptation, a particular focus is put on artificial intelligence (AI) solutions as a fast and accurate alternative to conventional algorithms.


Assuntos
Inteligência Artificial , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos
2.
J Appl Clin Med Phys ; 24(11): e14170, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788333

RESUMO

INTRODUCTION: In the Library-of-Plans (LoP) approach, correct plan selection is essential for delivering radiotherapy treatment accurately. However, poor image quality of the cone-beam computed tomography (CBCT) may introduce inter-observer variability and thereby hamper accurate plan selection. In this study, we investigated whether new techniques to improve the CBCT image quality and improve consistency in plan selection, affects the accuracy of LoP selection in cervical cancer patients. MATERIALS AND METHODS: CBCT images of 12 patients were used to investigate the inter-observer variability of plan selection based on different CBCT image types. Six observers were asked to individually select a plan based on clinical X-ray Volumetric Imaging (XVI) CBCT, iterative reconstructed CBCT (iCBCT) and synthetic CTs (sCT). Selections were performed before and after a consensus meeting with the entire group, in which guidelines were created. A scoring by all observers on the image quality and plan selection procedure was also included. For plan selection, Fleiss' kappa (κ) statistical test was used to determine the inter-observer variability within one image type. RESULTS: The agreement between observers was significantly higher on sCT compared to CBCT. The consensus meeting improved the duration and inter-observer variability. In this manuscript, the guidelines attributed the overall results in the plan selection. Before the meeting, the gold standard was selected in 76% of the cases on XVI CBCT, 74% on iCBCT, and 76% on sCT. After the meeting, the gold standard was selected in 83% of the cases on XVI CBCT, 81% on iCBCT, and 90% on sCT. CONCLUSION: The use of sCTs can increase the agreement of plan selection among observers and the gold standard was indicated to be selected more often. It is important that clear guidelines for plan selection are implemented in order to benefit from the increased image quality, accurate selection, and decrease inter-observer variability.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos
3.
Phys Imaging Radiat Oncol ; 25: 100416, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36969503

RESUMO

Background and purpose: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT number accuracy. However, correct representation of daily anatomy of the CBCT is also important for sCTs in adaptive radiotherapy. The aim of this study was to emphasize the importance of anatomical correctness by quantitatively assessing sCT scans generated from CBCT scans using different paired and unpaired dl-models. Materials and methods: Planning CTs (pCT) and CBCTs of 56 prostate cancer patients were included to generate sCTs. Three different dl-models, Dual-UNet, Single-UNet and Cycle-consistent Generative Adversarial Network (CycleGAN), were evaluated on image quality and anatomical correctness. The image quality was assessed using image metrics, such as Mean Absolute Error (MAE). The anatomical correctness between sCT and CBCT was quantified using organs-at-risk volumes and average surface distances (ASD). Results: MAE was 24 Hounsfield Unit (HU) [range:19-30 HU] for Dual-UNet, 40 HU [range:34-56 HU] for Single-UNet and 41HU [range:37-46 HU] for CycleGAN. Bladder ASD was 4.5 mm [range:1.6-12.3 mm] for Dual-UNet, 0.7 mm [range:0.4-1.2 mm] for Single-UNet and 0.9 mm [range:0.4-1.1 mm] CycleGAN. Conclusions: Although Dual-UNet performed best in standard image quality measures, such as MAE, the contour based anatomical feature comparison with the CBCT showed that Dual-UNet performed worst on anatomical comparison. This emphasizes the importance of adding anatomy based evaluation of sCTs generated by dl-models. For applications in the pelvic area, direct anatomical comparison with the CBCT may provide a useful method to assess the clinical applicability of dl-based sCT generation methods.

4.
Phys Med Biol ; 67(13)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35545081

RESUMO

Immobilization masks are used to prevent patient movement during head and neck (H&N) radiotherapy. Motion restriction is beneficial both during treatment, as well as in the pre-treatment simulation phase, where magnetic resonance imaging (MRI) is often used for target definition. However, the shape and size of the immobilization masks hinder the use of regular, close-fitting MRI receive arrays. In this work, we developed a mask-compatible 8-channel H&N array that consists of a single-channel baseplate, on which the mask can be secured, and a flexible 7-channel anterior element that follows the shape of the mask. The latter uses high impedance coils to achieve its flexibility and radiolucency. A fully-functional prototype was manufactured, its radiolucency was characterized, and the gain in imaging performance with respect to current clinical setups was quantified. Dosimetry measurements showed an overall dose change of -0.3%. Small, local deviations were up to -2.7% but had no clinically significant impact on a full treatment plan, as gamma pass rates (3%/3 mm) only slightly reduced from 97.9% to 97.6% (clinical acceptance criterion: ≥95%). The proposed H&N array improved the imaging performance with respect to three clinical setups. The H&N array more than doubled (+123%) and tripled (+246%) the signal-to-noise ratio with respect to the clinical MRI-simulation and MR-linac setups, respectively.G-factors were also lower with the proposed H&N array. The improved imaging performance resulted in a clearly visible signal-to-noise ratio improvement of clinically used TSE and DWI acquisitions. In conclusion, the 8-channel H&N array improves the imaging performance of MRI-simulation and MR-linac acquisitions, while dosimetry suggests that no clinically significant dose changes are induced.


Assuntos
Aceleradores de Partículas , Radioterapia Guiada por Imagem , Cabeça , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído
5.
Phys Med Biol ; 66(20)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34571496

RESUMO

The simultaneous use of positron emission tomography (PET) and magnetic resonance imaging (MRI) requires attenuation correction (AC) of photon-attenuating objects, such as MRI receive arrays. However, AC of flexible, on-body arrays is complex and therefore often omitted. This can lead to significant, spatially varying PET signal losses when conventional MRI receive arrays are used. Only few dedicated, photon transparent PET/MRI arrays exist, none of which are compatible with our new, wide-bore 1.5 T PET/MRI system dedicated to radiotherapy planning. In this work, we investigated the use of 1.5 T MR-linac (MRL) receive arrays for PET/MRI, as these were designed to have a low photon attenuation for accurate dose delivery and can be connected to the new 1.5 T PET/MRI scanner. Three arrays were assessed: an 8-channel clinically-used MRL array, a 32-channel prototype MRL array, and a conventional MRI receive array. We experimentally determined, simulated, and compared the impact of these arrays on the PET sensitivity and image reconstructions. Furthermore, MRI performance was compared. Overall coil-induced PET sensitivity losses were reduced from 8.5% (conventional) to 1.7% (clinical MRL) and 0.7% (prototype MRL). Phantom measurements showed local signal errors of up to 32.7% (conventional) versus 3.6% (clinical MRL) and 3.5% (prototype MRL). Simulations with data of eight cancer patients showed average signal losses were reduced from 14.3% (conventional) to 1.2% (clinical MRL) and 1.0% (prototype MRL). MRI data showed that the signal-to-noise ratio of the MRL arrays was slightly lower at depth (110 versus 135). The parallel imaging performance of the conventional and prototype MRL arrays was similar, while the clinical MRL array's performance was lower. In conclusion, MRL arrays reducein-vivoPET signal losses >10×, which decreases, or eliminates, the need for coil AC on a new 1.5 T PET/MRI system. The prototype MRL array allows flexible coil positioning without compromising PET or MRI performance. One limitation of MRL arrays is their limited radiolucent PET window (field of view) in the craniocaudal direction.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos
6.
Int J Radiat Oncol Biol Phys ; 111(4): 867-875, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265394

RESUMO

PURPOSE: High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive workflow, potentially give rise to novel online anatomic and response adaptive radiation therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study (NCT04075305), a prospective international registry of the MR-Linac Consortium. METHODS AND MATERIALS: Patients were included between February 2019 and October 2020 at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end of treatment). RESULTS: A total 943 patients participated in the MOMENTUM Study, 702 of whom had complete baseline data at the time of this analysis. Patients were primarily male (79%) with a median age of 68 years (range, 22-93) and were treated for 39 different indications. The most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity related to radiation was observed. CONCLUSIONS: In the first 21 months of our study, patterns of care were diverse with respect to clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was encouraging.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros , Adulto Jovem
7.
Phys Med Biol ; 66(7)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33631729

RESUMO

Introduction/Background. Despite growing interest in magnetic resonance imaging (MRI), integration in external beam radiotherapy (EBRT) treatment planning uptake varies globally. In order to understand the current international landscape of MRI in EBRT a survey has been performed in 11 countries. This work reports on differences and common themes identified.Methods. A multi-disciplinary Institute of Physics and Engineering in Medicine working party modified a survey previously used in the UK to understand current practice using MRI for EBRT treatment planning, investigate how MRI is currently used and managed as well as identify knowledge gaps. It was distributed electronically within 11 countries: Australia, Belgium, Denmark, Finland, France, Italy, the Netherlands, New Zealand, Sweden, the UK and the USA.Results. The survey response rate within the USA was <1% and hence these results omitted from the analysis. In the other 10 countries the survey had a median response rate of 77% per country. Direct MRI access, defined as either having a dedicated MRI scanner for radiotherapy (RT) or access to a radiology MRI scanner, varied between countries. France, Italy and the UK reported the lowest direct MRI access rates and all other countries reported direct access in ≥82% of centres. Whilst ≥83% of centres in Denmark and Sweden reported having dedicated MRI scanners for EBRT, all other countries reported ≤29%. Anatomical sites receiving MRI for EBRT varied between countries with brain, prostate, head and neck being most common. Commissioning and QA of image registration and MRI scanners varied greatly, as did MRI sequences performed, staffing models and training given to different staff groups. The lack of financial reimbursement for MR was a consistent barrier for MRI implementation for RT for all countries and MR access was a reported important barrier for all countries except Sweden and Denmark.Conclusion. No country has a comprehensive approach for MR in EBRT adoption and financial barriers are present worldwide. Variations between countries in practice, equipment, staffing models, training, QA and MRI sequences have been identified, and are likely to be due to differences in funding as well as a lack of consensus or guidelines in the literature. Access to dedicated MR for EBRT is limited in all but Sweden and Denmark, but in all countries there are financial challenges with ongoing per patient costs. Despite these challenges, significant interest exists in increasing MR guided EBRT planning over the next 5 years.


Assuntos
Iodobenzenos , Humanos , Imageamento por Ressonância Magnética , Masculino , Maleimidas , Planejamento da Radioterapia Assistida por Computador/métodos
8.
Front Oncol ; 10: 1328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014774

RESUMO

Purpose: MR-guided Radiation Therapy (MRgRT) allows for high-precision radiotherapy under real-time MR visualization. This enables margin reduction and subsequent dose escalation which may lead to higher tumor control and less toxicity. The Unity MR-linac (Elekta AB, Stockholm, Sweden) integrates a linear accelerator with a 1.5T diagnostic quality MRI and an online adaptive workflow. A prospective international registry was established to facilitate the evidence-based implementation of the Unity MR-linac into clinical practice, to systemically evaluate long-term outcomes, and to aid further technical development of MR-linac-based MRgRT. Methods and Results: In February 2019, the Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac study (MOMENTUM) started within the MR-linac Consortium. The MOMENTUM study is an international academic-industrial partnership between several hospitals and industry partner Elekta. All patients treated on the MR-linac are eligible for inclusion in MOMENTUM. For participants, we collect clinical patient data (e.g., patient, tumor, and treatment characteristics) and technical patient data which is defined as information generated on the MR-linac during treatment. The data are captured, pseudonymized, and stored in an international registry at set time intervals up to two years after treatment. Patients can choose to provide patient-reported outcomes and consent to additional MRI scans acquired on the MR-linac. This registry will serve as a data platform that supports multicenter research investigating the MR-linac. Rules and regulations on data sharing, data access, and intellectual property rights are summarized in an academic-industrial collaboration agreement. Data access rules ensure secure data handling and research integrity for investigators and institutions. Separate data access rules exist for academic and industry partners. This study is registered at ClinicalTrials.gov with ID: NCT04075305 (https://clinicaltrials.gov/ct2/show/NCT04075305). Conclusion: The multi-institutional MOMENTUM study has been set up to collect clinical and technical patient data to advance technical development, and facilitate evidenced-based implementation of MR-linac technology with the ultimate purpose to improve tumor control, survival, and quality of life of patients with cancer.

9.
Radiother Oncol ; 153: 106-113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017604

RESUMO

BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) for treatment response monitoring is feasible on hybrid magnetic resonance linear accelerator (MR-linac) systems. The MRI scanner of the Elekta Unity system has an adjusted design compared to diagnostic scanners. We investigated its impact on measuring the DWI-derived apparent diffusion coefficient (ADC) regarding three aspects: the choice of b-values, the spatial variation of the ADC, and scanning during radiation treatment. The aim of this study is to give recommendations for accurate ADC measurements on Unity systems. MATERIALS AND METHODS: Signal-to-noise ratio (SNR) measurements with increasing b-values were done to determine the highest bvalue that can be measured reliably. The spatial variation of the ADC was assessed on six Unity systems with a cylindrical phantom of 40 cm diameter. The influence of gantry rotation and irradiation was investigated by acquiring DWI images before and during treatment of 11 prostate cancer patients. RESULTS: On the Unity system, a maximum b-value of 500 s/mm2 should be used for ADC quantification, as a trade-off between SNR and diffusion weighting. Accurate ADC values were obtained within 7 cm from the iso-center, while outside this region ADC values deviated more than 5%. The ADC was not influenced by the rotating linac or irradiation during treatment. CONCLUSION: We provide Unity system specific recommendations for measuring the ADC. This will increase the consistency of ADC values acquired in different centers on the Unity system, enabling large cohort studies for biomarker discovery and treatment response monitoring.


Assuntos
Imagem de Difusão por Ressonância Magnética , Aceleradores de Partículas , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
10.
Phys Med Biol ; 65(21): 215008, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32698168

RESUMO

High impedance coils (HICs) are suitable as a building block of receive arrays for MRI-guided radiotherapy (MRIgRT) as HICs do not require radiation-attenuating capacitors and dense support materials. Recently, we proved the feasibility of using HICs to create a radiation transparent (i.e. radiolucent) window. In this work, we constructed a fully functional 32-channel array based on this design. The anterior element is flexible and follows the shape of the subject, while the posterior element is rigid to support the subject. Both elements feature a 2 × 8 channel layout. Here, we discuss the construction process and characterize the array's radiolucency and imaging performance. The dosimetric impact of the array was quantified by assessing the surface dose increase and attenuation of a single beam. The imaging performance of the prototype was compared to the clinical array in terms of visual appearance, signal-to-noise ratio (SNR), and acceleration performance, both in phantom and in-vivo measurements. Dosimetry measurements showed that on-body placement changed the anterior and posterior surface dose by +3% and -16% of the dose maximum. Attenuation under the anterior support materials and conductors was 0.3% and ≤1.5%, respectively. Phantom and in-vivo imaging with this array demonstrated an improvement of the SNR at the surface and the image quality in general. Simultaneous irradiation did not affect the SNR. G-factors were reduced considerably and clinically used sequences could be accelerated by up to 45%, which would greatly reduce pre-beam imaging times. Finally, the maximally achievable temporal resolution of abdominal 3D cine imaging was improved to 1.1 s, which was > 5 × faster than could be achieved with the clinical array. This constitutes a big step towards the ability to resolve respiratory motion in 3D. In conclusion, the proposed 32-channel array is compatible with MRIgRT and can significantly reduce scan times and/or improve the image quality of all on-line scans.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Radiometria , Razão Sinal-Ruído
11.
Phys Med Biol ; 65(15): 155015, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32408295

RESUMO

To enable magnetic resonance imaging (MRI)-guided radiotherapy with real-time adaptation, motion must be quickly estimated with low latency. The motion estimate is used to adapt the radiation beam to the current anatomy, yielding a more conformal dose distribution. As the MR acquisition is the largest component of latency, deep learning (DL) may reduce the total latency by enabling much higher undersampling factors compared to conventional reconstruction and motion estimation methods. The benefit of DL on image reconstruction and motion estimation was investigated for obtaining accurate deformation vector fields (DVFs) with high temporal resolution and minimal latency. 2D cine MRI acquired at 1.5 T from 135 abdominal cancer patients were retrospectively included in this study. Undersampled radial golden angle acquisitions were retrospectively simulated. DVFs were computed using different combinations of conventional- and DL-based methods for image reconstruction and motion estimation, allowing a comparison of four approaches to achieve real-time motion estimation. The four approaches were evaluated based on the end-point-error and root-mean-square error compared to a ground-truth optical flow estimate on fully-sampled images, the structural similarity (SSIM) after registration and time necessary to acquire k-space, reconstruct an image and estimate motion. The lowest DVF error and highest SSIM were obtained using conventional methods up to [Formula: see text]. For undersampling factors [Formula: see text], the lowest DVF error and highest SSIM were obtained using conventional image reconstruction and DL-based motion estimation. We have found that, with this combination, accurate DVFs can be obtained up to [Formula: see text] with an average root-mean-square error up to 1 millimeter and an SSIM greater than 0.8 after registration, taking 60 milliseconds. High-quality 2D DVFs from highly undersampled k-space can be obtained with a high temporal resolution with conventional image reconstruction and a deep learning-based motion estimation approach for real-time adaptive MRI-guided radiotherapy.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética , Movimento , Radioterapia Guiada por Imagem , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/fisiopatologia , Neoplasias Abdominais/radioterapia , Humanos , Estudos Retrospectivos , Fatores de Tempo
12.
Radiat Oncol ; 15(1): 41, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070386

RESUMO

BACKGROUND: The STAR-TReC trial is an international multi-center, randomized, phase II study assessing the feasibility of short-course radiotherapy or long-course chemoradiotherapy as an alternative to total mesorectal excision surgery. A new target volume is used for both (chemo)radiotherapy arms which includes only the mesorectum. The treatment planning QA revealed substantial variation in dose to organs at risk (OAR) between centers. Therefore, the aim of this study was to determine the treatment plan variability in terms of dose to OAR and assess the effect of a national study group meeting on the quality and variability of treatment plans for mesorectum-only planning for rectal cancer. METHODS: Eight centers produced 25 × 2 Gy treatment plans for five cases. The OAR were the bowel cavity, bladder and femoral heads. A study group meeting for the participating centers was organized to discuss the planning results. At the meeting, the values of the treatment plan DVH parameters were distributed among centers so that results could be compared. Subsequently, the centers were invited to perform replanning if they considered this to be necessary. RESULTS: All treatment plans, both initial planning and replanning, fulfilled the target constraints. Dose to OAR varied considerably for the initial planning, especially for dose levels below 20 Gy, indicating that there was room for trade-offs between the defined OAR. Five centers performed replanning for all cases. One center did not perform replanning at all and two centers performed replanning on two and three cases, respectively. On average, replanning reduced the bowel cavity V20Gy by 12.6%, bowel cavity V10Gy by 22.0%, bladder V35Gy by 14.7% and bladder V10Gy by 10.8%. In 26/30 replanned cases the V10Gy of both the bowel cavity and bladder was lower, indicating an overall lower dose to these OAR instead of a different trade-off. In addition, the bowel cavity V10Gy and V20Gy showed more similarity between centers. CONCLUSIONS: Dose to OAR varied considerably between centers, especially for dose levels below 20 Gy. The study group meeting and the distribution of the initial planning results among centers resulted in lower dose to the defined OAR and reduced variability between centers after replanning. TRIAL REGISTRATION: The STAR-TReC trial, ClinicalTrials.gov Identifier: NCT02945566. Registered 26 October 2016, https://clinicaltrials.gov/ct2/show/NCT02945566).


Assuntos
Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Neoplasias Retais/radioterapia , Reto/efeitos da radiação , Humanos , Países Baixos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
13.
Magn Reson Med ; 84(1): 115-127, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31755580

RESUMO

PURPOSE: To propose an explicit Balanced steady-state free precession (bSSFP) signal model that predicts eddy current-induced steady-state disruptions and to provide a prospective, practical, and general eddy current compensation method. THEORY AND METHODS: Gradient impulse response functions (GIRF) were used to simulate trajectory-specific eddy current-induced phase errors at the end of a repetition block. These phase errors were included in bloch simulations to establish a bSSFP signal model to predict steady-state disruptions and their corresponding image artifacts. The signal model was embedded in the MR system and used to compensate the phase errors by prospectively modifying the phase cycling scheme of the RF pulse. The signal model and eddy current compensation method were validated in phantom and in vivo experiments. In addition, the signal model was used to analyze pre-existing eddy current mitigation methods, such as 2D tiny golden angle radial and 3D paired phase encoded Cartesian acquisitions. RESULTS: The signal model predicted eddy current-induced image artifacts, with the zeroth-order GIRF being the primary factor to predict the steady-state disruption. Prospective RF phase cycling schemes were automatically computed online and considerably reduced eddy current-induced image artifacts. The signal model provides a direct relationship for the smoothness of k-space trajectories, which explains the effectiveness of phase encode pairing and tiny golden angle trajectory. CONCLUSIONS: The proposed signal model can accurately predict eddy current-induced steady-state disruptions for bSSFP imaging. The signal model can be used to derive the eddy current-induced phase errors required for trajectory-specific RF phase cycling schemes, which considerably reduce eddy current-induced image artifacts.


Assuntos
Artefatos , Interpretação de Imagem Assistida por Computador , Algoritmos , Aumento da Imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
14.
Phys Med Biol ; 64(18): 185004, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370043

RESUMO

The lack of radiation-attenuating tuning capacitors in high impedance coils (HICs) make HICs an interesting building block of receive arrays for MRI-guided radiotherapy (MRIgRT). Additionally, their flexibility and limited channel coupling allow for low-density support materials, which are likely to be more radiation transparent (radiolucent). In this work, we introduce the use of HICs in receive arrays for MRIgRT treatments. We discuss the design and show the dosimetric feasibility of a HIC receive array that has a high channel count and aims to improve the imaging performance of the 1.5 T MR-linac. Our on-body design comprises an anterior and posterior element, which each feature a [Formula: see text] channel layout (32 channels total). The anterior element is flexible, while the posterior element is rigid to support the patient. Mockups consisting of support materials and conductors were built, irradiated, and optimized to minimize impact on the surface dose (7% of the dose maximum) and dose at depth ([Formula: see text]0.8% under a single conductor and [Formula: see text]1.4% under a conductor crossing). Anatomical motion and the use of multiple beam angles will ensure that these slight dose changes at depth are clinically insignificant. Subsequently, several functional, single-channel HIC imaging prototypes and a 5-channel array were built to assess the performance in terms of signal-to-noise ratio (SNR). The performance was compared to the clinical MR-linac array and showed that the 5-channel imaging prototype outperformed the clinical array in terms of SNR and channel coupling. Imaging performance was not affected by the radiation beam. In conclusion, the use of HICs allowed for the design of our flexible, on-body receive array for MRIgRT. The design was shown to be dosimetrically feasible and improved the SNR. Future research with a full array will need to show the gain in parallel imaging performance and thus acceleration.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética/instrumentação , Fenômenos Mecânicos , Aceleradores de Partículas/instrumentação , Impedância Elétrica , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
15.
Front Oncol ; 9: 647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380283

RESUMO

In brain/head-and-neck radiotherapy (RT), thermoplastic immobilization masks guarantee reproducible patient positioning in treatment position between MRI, CT, and irradiation. Since immobilization masks do not fit in the diagnostic MR head/head-and-neck coils, flexible surface coils are used for MRI imaging in clinical practice. These coils are placed around the head/neck, in contact with the immobilization masks. However, the positioning of these flexible coils is technician dependent, thus leading to poor image reproducibility. Additionally, flexible surface coils have an inferior signal-to-noise-ratio (SNR) compared to diagnostic coils. The aim of this work was to create a new immobilization setup which fits into the diagnostic MR coils in order to enhance MR image quality and reproducibility. For this purpose, a practical immobilization setup was constructed. The performances of the standard clinical and the proposed setups were compared with four tests: SNR, image quality, motion restriction, and reproducibility of inter-fraction subject positioning. The new immobilization setup resulted in 3.4 times higher SNR values on average than the standard setup, except directly below the flexible surface coils where similar SNR was observed. Overall, the image quality was superior for brain/head-and-neck images acquired with the proposed RT setup. Comparable motion restriction in feet-head/left-right directions (maximum motion ≈1 mm) and comparable inter-fraction repositioning accuracy (mean inter-fraction movement 1 ± 0.5 mm) were observed for the standard and the new setup.

16.
Int J Hyperthermia ; 36(1): 702-711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31340697

RESUMO

Objective: To develop and evaluate a combined motion-assisted/gated MRHIFU heating strategy designed to accelerate the treatment procedure by reducing the required number of sonications to ablate a target volume in the pancreas. Methods: A planning method for combined motion-assisted/gated MRHIFU using 4D-MRI and motion characterization is introduced. Six healthy volunteers underwent 4D-MRI for target motion characterization on a 3.0-T clinical scanner. Using displacement patterns, simulations were performed for all volunteers for three sonication approaches: gated, combined motion-assisted/gated, and static. The number of sonications needed to ablate the pancreas head was compared. The influence of displacement amplitude and target volume size was investigated. Spherical target volumes (8, 15, 20 and 34 mL) and displacement amplitudes ranging from 5 to 25 mm were evaluated. For this case, the number of sonications required to ablate the whole target was determined. Results: The number of required sonications was lowest for a static target, 62 on average (range 49-78). The gated approach required most sonications, 126 (range 97-159). The combined approach was almost as efficient as the hypothetical static case, with an average of 78 (range 53-123). Simulations showed that with a 5-mm displacement amplitude, the target could be treated by making use of motion-assisted MRHIFU sonications only. In that case, this approach allowed the lowest number of sonication, while for 10 mm and above, the number of required sonications increased. Conclusion: The use of a combined motion-assisted/gated MRHIFU strategy may accelerate tumor ablation in the pancreas when respiratory-induced displacement amplitudes are between 5 and 10 mm.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Pâncreas/diagnóstico por imagem , Humanos , Pâncreas/cirurgia , Sonicação
17.
Clin Transl Radiat Oncol ; 18: 54-59, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31341976

RESUMO

BACKGROUND AND PURPOSE: The promise of the MR-linac is that one can visualize all anatomical changes during the course of radiotherapy and hence adapt the treatment plan in order to always have the optimal treatment. Yet, there is a trade-off to be made between the time spent for adapting the treatment plan against the dosimetric gain. In this work, the various daily plan adaptation methods will be presented and applied on a variety of tumour sites. The aim is to provide an insight in the behavior of the state-of-the-art 1.5 T MRI guided on-line adaptive radiotherapy methods. MATERIALS AND METHODS: To explore the different available plan adaptation workflows and methods, we have simulated online plan adaptation for five cases with varying levels of inter-fraction motion, regions of interest and target sizes: prostate, rectum, esophagus and lymph node oligometastases (single and multiple target). The plans were evaluated based on the clinical dose constraints and the optimization time was measured. RESULTS: The time needed for plan adaptation ranged between 17 and 485 s. More advanced plan adaptation methods generally resulted in more plans that met the clinical dose criteria. Violations were often caused by insufficient PTV coverage or, for the multiple lymph node case, a too high dose to OAR in the vicinity of the PTV. With full online replanning it was possible to create plans that met all clinical dose constraints for all cases. CONCLUSION: Daily full online replanning is the most robust adaptive planning method for Unity. It is feasible for specific sites in clinically acceptable times. Faster methods are available, but before applying these, the specific use cases should be explored dosimetrically.

18.
Phys Med Biol ; 64(12): 12NT01, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31108467

RESUMO

This work aimed to quantify any principal magnetic field (B 0) inhomogeneity and changes in MR image geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. This situation occurs for around a second between treatment beams during current image guided radiotherapy treatment and would occur frequently in foreseeable real-time adaptive radiotherapy treatment. Pixel by pixel maps of B 0 inhomogeneity were obtained via repeated high temporal resolution pulse sequences with the linac gantry static at 36 gantry angles spaced ten degrees apart, and in continuous rotation at both 1 and 2 rpm. Individual B 0 maps were subtracted from average maps across all data and the residual peak to peak inhomogeneity was calculated for each. The bulk geometric shift and change in physical extent of a 10 cm diameter spherical flood phantom during continuous linac gantry rotation at 1 and 2 rpm was compared to the static gantry case for two pulse sequences: the real-time clinical monitoring bFFE sequence and a non-clinical EPI sequence, chosen for its susceptibility to geometric distortion. The peak to peak inhomogeneity in the deviation-from-average ppm maps, plotted against gantry angle with the gantry in continuous rotation at 1 and 2 rpm were negligibly different from equivalent data obtained with the gantry static. The real-time clinical monitoring pulse sequence was shown to give negligible geometric distortion during continuous gantry motion, whilst a non-clinical EPI sequence showed bulk shifts of the order of one pixel and gantry angle dependent changes in extent, demonstrating the sensitivity of the chosen method. MR imaging on the Elekta Unity MR-Linac with the gantry in continuous motion is negligibly different from the static gantry case with current clinical pulse sequences. Real-time tracking and treatment plan adaptation using MR images obtained with the linac gantry in motion is possible.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Rotação , Algoritmos , Humanos , Imagens de Fantasmas , Radioterapia Guiada por Imagem
19.
Radiother Oncol ; 133: 156-162, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30935572

RESUMO

PURPOSE: Systems for magnetic resonance (MR-) guided radiotherapy enable daily MR imaging of cancer patients during treatment, which is of interest for treatment response monitoring and biomarker discovery using quantitative MRI (qMRI). Here, the performance of a 1.5 T MR-linac regarding qMRI was assessed on phantoms. Additionally, we show the feasibility of qMRI in a prostate cancer patient on this system for the first time. MATERIALS AND METHODS: Four 1.5 T MR-linac systems from four institutes were included in this study. T1 and T2 relaxation times, and apparent diffusion coefficient (ADC) maps, as well as dynamic contrast enhanced (DCE) images were acquired. Bland-Altman statistics were used, and accuracy, repeatability, and reproducibility were determined. RESULTS: Median accuracy for T1 ranged over the four systems from 2.7 to 14.3%, for T2 from 10.4 to 14.1%, and for ADC from 1.9 to 2.7%. For DCE images, the accuracy ranged from 12.8 to 35.8% for a gadolinium concentration of 0.5 mM and deteriorated for higher concentrations. Median short-term repeatability for T1 ranged from 0.6 to 5.1%, for T2 from 0.4 to 1.2%, and for ADC from 1.3 to 2.2%. DCE acquisitions showed a coefficient of variation of 0.1-0.6% in the signal intensity. Long-term repeatability was 1.8% for T1, 1.4% for T2, 1.7% for ADC, and 17.9% for DCE. Reproducibility was 11.2% for T1, 2.9% for T2, 2.2% for ADC, and 18.4% for DCE. CONCLUSION: These results indicate that qMRI on the Unity MR-linac is feasible, accurate, and repeatable which is promising for treatment response monitoring and treatment plan adaptation based on daily qMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Neoplasias da Próstata/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Estudos de Viabilidade , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
20.
Radiother Oncol ; 134: 50-54, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31005224

RESUMO

Online adaptive radiotherapy using the 1.5 Tesla MR-linac is feasible for SBRT (5 × 7 Gy) of pelvic lymph node oligometastases. The workflow allows full online planning based on daily anatomy. Session duration is less than 60 min. Quality assurance tests, including independent 3D dose calculations and film measurements were passed.


Assuntos
Linfonodos/efeitos da radiação , Neoplasias da Próstata/radioterapia , Radiocirurgia/instrumentação , Estudos de Viabilidade , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática , Imageamento por Ressonância Magnética/métodos , Masculino , Aceleradores de Partículas , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...