Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Educ (Dordr) ; 31(6): 1541-1566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578695

RESUMO

Understanding and communicating uncertainty is a key skill needed in the practice of science. However, there has been little research on the instruction of uncertainty in undergraduate science education. Our team designed a module within an online geoscience field course which focused on explicit instruction around uncertainty and provided students with an uncertainty rating scale to record and communicate their uncertainty with a common language. Students then explored a complex, real-world geological problem about which expert scientists had previously made competing claims through geologic maps. Provided with data, expert uncertainty ratings, and the previous claims, students made new geologic maps of their own and presented arguments about their claims in written form. We analyzed these reports along with assessments of uncertainty. Most students explicitly requested geologists' uncertainty judgments in a post-course assessment when asked why scientists might differ in their conclusions and/or utilized the rating scale unprompted in their written arguments. Through the examination of both pre- and post-course assessments of uncertainty and students' course-based assessments, we argue that explicit instruction around uncertainty can be introduced during undergraduate coursework and could facilitate geoscience novices developing into practicing geoscientists.

2.
Sci Adv ; 4(6): eaat1513, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29963632

RESUMO

Large rhyolitic volcanoes pose a hazard, yet the processes and signals foretelling an eruption are obscure. Satellite geodesy has revealed surface inflation signaling unrest within magma reservoirs underlying a few rhyolitic volcanoes. Although seismic, electrical, and potential field methods may illuminate the current configuration and state of these reservoirs, they cannot fully address the processes by which they grow and evolve on geologic time scales. We combine measurement of a deformed paleoshore surface, isotopic dating of volcanism and surface exposure, and modeling to determine the rate of growth of a rhyolite-producing magma reservoir. The numerical approach builds on a magma intrusion model developed to explain the current, decade-long, surface inflation at >20 cm/year. Assuming that the observed 62-m uplift reflects several non-eruptive intrusions of magma, each similar to the unrest over the past decade, we find that ~13 km3 of magma recharged the reservoir at a depth of ~7 km during the Holocene, accompanied by the eruption of ~9 km3 of rhyolite. The long-term rate of magma input is consistent with reservoir freezing and pluton formation. Yet, the unique set of observations considered here implies that large reservoirs can be incubated and grow at shallow depth via episodic high-flux magma injections. These replenishment episodes likely drive rapid inflation, destabilize cooling systems, propel rhyolitic eruptions, and thus should be carefully monitored.

3.
Top Cogn Sci ; 9(4): 943-969, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28941131

RESUMO

Research from cognitive science and geoscience education has shown that sketching can improve spatial thinking skills and facilitate solving spatially complex problems. Yet sketching is rarely implemented in introductory geosciences courses, due to time needed to grade sketches and lack of materials that incorporate cognitive science research. Here, we report a design-centered, collaborative effort, between geoscientists, cognitive scientists, and artificial intelligence (AI) researchers, to characterize spatial learning challenges in geoscience and to design sketch activities that use a sketch-understanding program, CogSketch. We developed 26 CogSketch worksheets that use cognitive science-based principles to scaffold problem solving of spatially complex geoscience problems and report observations of an implementation in an introductory geoscience course where students used CogSketch or human-graded paper worksheets. Overall, this research highlights the principles of interdisciplinary design between cognitive scientists, geoscientists, and AI researchers that can inform the collaborative design process for others aiming to develop effective educational materials.


Assuntos
Compreensão , Resolução de Problemas , Aprendizagem Espacial , Ciências da Terra , Humanos , Estudantes
4.
Cogn Process ; 14(2): 163-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423639

RESUMO

Cognitive science has primarily studied the mental simulation of spatial transformations with tests that focus on rigid transformations (e.g., mental rotation). However, the events of our world are not limited to rigid body movements. Objects can undergo complex non-rigid discontinuous and continuous changes, such as bending and breaking. We developed a new task to assess mental visualization of non-rigid transformations. The Non-rigid Bending test required participants to visualize a continuous non-rigid transformation applied to an array of objects by asking simple spatial questions about the position of two forms on a bent transparent sheet of plastic. Participants were to judge the relative position of the forms when the sheet was unbent. To study the cognitive skills needed to visualize rigid and non-rigid events, we employed four tests of mental transformations--the Non-rigid Bending test (a test of continuous non-rigid mental transformation), the Paper Folding test and the Mental Brittle Transformation test (two tests of non-rigid mental transformation with local rigid transformations), and the Vandenberg and Kuse (Percept Motor Skills 47:599-604, 1978) Mental Rotation test (a test of rigid mental transformation). Performance on the Mental Brittle Transformation test and the Paper Folding test independently predicted performance on the Non-rigid Bending test and performance on the Mental Rotation test; however, mental rotation performance was not a unique predictor of mental bending performance. Results are consistent with separable skills for rigid and non-rigid mental simulation and illustrate the value of an ecological approach to the analysis of the structure of spatial thinking.


Assuntos
Imaginação , Destreza Motora/fisiologia , Rotação , Percepção Espacial/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Valor Preditivo dos Testes , Análise de Regressão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...