Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 872: 162058, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758698

RESUMO

Real-time surveillance of infectious diseases at schools or in communities is often hampered by delays in reporting due to resource limitations and infrastructure issues. By incorporating quantitative PCR and genome sequencing, wastewater surveillance has been an effective complement to public health surveillance at the community and building-scale for pathogens such as poliovirus, SARS-CoV-2, and even the monkeypox virus. In this study, we asked whether wastewater surveillance programs at elementary schools could be leveraged to detect RNA from influenza viruses shed in wastewater. We monitored for influenza A and B viral RNA in wastewater from six elementary schools from January to May 2022. Quantitative PCR led to the identification of influenza A viral RNA at three schools, which coincided with the lifting of COVID-19 restrictions and a surge in influenza A infections in Las Vegas, Nevada, USA. We performed genome sequencing of wastewater RNA, leading to the identification of a 2021-2022 vaccine-resistant influenza A (H3N2) 3C.2a1b.2a.2 subclade. We next tested wastewater samples from a treatment plant that serviced the elementary schools, but we were unable to detect the presence of influenza A/B RNA. Together, our results demonstrate the utility of near-source wastewater surveillance for the detection of local influenza transmission in schools, which has the potential to be investigated further with paired school-level influenza incidence data.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/genética , Águas Residuárias , Vírus da Influenza A Subtipo H3N2/genética , Nevada/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Vigilância Epidemiológica Baseada em Águas Residuárias , Vacinas contra Influenza/genética , RNA Viral , Instituições Acadêmicas
2.
JAMA Netw Open ; 6(2): e230550, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821109

RESUMO

Importance: Interpretation of wastewater surveillance data is potentially confounded in communities with mobile populations, so it is important to account for this issue when conducting wastewater-based epidemiology (WBE). Objectives: To leverage spatial and temporal differences in wastewater whole-genome sequencing (WGS) data to quantify relative SARS-CoV-2 contributions from visitors to southern Nevada. Design, Setting, and Participants: This cross-sectional wastewater surveillance study was performed during the COVID-19 pandemic (March 2020 to February 2022) and included weekly influent wastewater samples that were analyzed by reverse transcription-quantitative polymerase chain reaction to quantify SARS-CoV-2 RNA and WGS for identification of variants of concern. This study was conducted in the Las Vegas, Nevada, metropolitan area, which is a semi-urban area with approximately 2.3 million residents and nearly 1 million weekly visitors. Samples were collected from 7 wastewater treatment plant (WWTP) locations that collectively serve the vast majority of southern Nevada (excluding the small number of septic systems) and 1 manhole serving the southern portion of the Las Vegas Strip. With Las Vegas tourism returning to prepandemic levels in 2021, it was hypothesized that visitors were contributing a disproportionate fraction of SARS-CoV-2 RNA to the largest WWTP in southern Nevada, potentially confounding efforts to estimate COVID-19 incidence in the local community through WBE. Main Outcomes and Measures: Relative SARS-CoV-2 load and variants from visitors vs the local population. Results: The Omicron BA.1 VOC was detected in the Las Vegas Strip manhole approximately 1 week before its detection at the WWTP locations (December 13, 2021) and by clinical testing (December 14, 2021). On December 13, Omicron-specific mutations represented a mean (SD) of 48.0% (4.2%) of all genomes from the Las Vegas Strip manhole and 4.1% (1.4%) of all genomes at facilities 2 and 3; by December 20, Omicron-specific mutations represented means (SD) of 82.0% (3.0%) of all genomes at the Las Vegas Strip manhole and 48.0% (2.8%) of all genomes at facilities 2 and 3, respectively. During this time, it was estimated that visitors contributed more than 60% of the SARS-CoV-2 load to the sewershed serving the Las Vegas Strip and that Omicron prevalence among visitors was 40% to 60% on December 13 and 80% to 100% on December 20th. Conclusions and Relevance: Wastewater surveillance is a valuable complement to clinical tools and can provide time-sensitive data for decision-makers and policy makers. This study represents a novel approach for quantifying the confounding effects of mobile populations on wastewater surveillance data, thereby allowing for modification of an existing WBE framework for estimating COVID-19 incidence in southern Nevada.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Estudos Transversais , Pandemias , RNA Viral , Vigilância Epidemiológica Baseada em Águas Residuárias
3.
Microbiology (Reading) ; 168(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282148

RESUMO

Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Perfilação da Expressão Gênica , Fenótipo , RNA Mensageiro , Regulação Bacteriana da Expressão Gênica
4.
Sci Total Environ ; 853: 158577, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087661

RESUMO

During the early phase of the COVID-19 pandemic, infected patients presented with symptoms similar to bacterial pneumonias and were treated with antibiotics before confirmation of a bacterial or fungal co-infection. We reasoned that wastewater surveillance could reveal potential relationships between reduced antimicrobial stewardship, specifically misprescribing antibiotics to treat viral infections, and the occurrence of antimicrobial resistance (AMR) in an urban community. Here, we analyzed microbial communities and AMR profiles in sewage samples from a wastewater treatment plant (WWTP) and a community shelter in Las Vegas, Nevada during a COVID-19 surge in December 2020. Using a respiratory pathogen and AMR enrichment next-generation sequencing panel, we identified four major phyla in the wastewater, including Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. Consistent with antibiotics that were reportedly used to treat COVID-19 infections (e.g., fluoroquinolones and beta-lactams), we also measured a significant spike in corresponding AMR genes in the wastewater samples. AMR genes associated with colistin resistance (mcr genes) were also identified exclusively at the WWTP, suggesting that multidrug resistant bacterial infections were being treated during this time. We next compared the Las Vegas sewage data to local 2018-2019 antibiograms, which are antimicrobial susceptibility profile reports about common clinical pathogens. Similar to the discovery of higher levels of beta-lactamase resistance genes in sewage during 2020, beta-lactam antibiotics accounted for 51 ± 3 % of reported antibiotics used in antimicrobial susceptibility tests of 2018-2019 clinical isolates. Our data highlight how wastewater-based epidemiology (WBE) can be leveraged to complement more traditional surveillance efforts by providing community-level data to help identify current and emerging AMR threats.


Assuntos
COVID-19 , Águas Residuárias , Humanos , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Esgotos/microbiologia , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Colistina , Pandemias , Farmacorresistência Bacteriana/genética , beta-Lactamas , Fluoroquinolonas , Bactérias
5.
Fly (Austin) ; 16(1): 176-189, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468034

RESUMO

Genetic screens are used in Drosophila melanogaster to identify genes key in the regulation of organismal development and growth. These screens have defined signalling pathways necessary for tissue and organismal development, which are evolutionarily conserved across species, including Drosophila. Here, we have used an FLP/FRT mosaic system to screen for conditional regulators of cell growth and cell division in the Drosophila eye. The conditional nature of this screen utilizes a block in the apoptotic pathway to prohibit the mosaic mutant cells from dying via apoptosis. From this screen, we identified two different mutants that mapped to the Hedgehog signalling pathway. Previously, we described a novel Ptc mutation and here we add to the understanding of disrupting the Hh pathway with a novel allele of Cos2. Both of these Hh components are negative regulators of the pathway, yet they depict mutant differences in the type of overgrowth created. Ptc mutations lead to overgrowth consisting of almost entirely wild-type tissue (non-autonomous overgrowth), while the Cos2 mutation results in tissue that is overgrown in both the mutant and wild-type clones (both autonomous and non-autonomous). These differences in tissue overgrowth are consistent in the Drosophila eye and wing. The observed difference is correlated with different deregulation patterns of pMad, the downstream effector of DPP signalling. This finding provides insight into pathway-specific differences that help to better understand intricacies of developmental processes and human diseases that result from deregulated Hedgehog signalling, such as basal cell carcinoma.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mutação , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
6.
Sci Total Environ ; 835: 155410, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469875

RESUMO

A decline in diagnostic testing for SARS-CoV-2 is expected to delay the tracking of COVID-19 variants of concern and interest in the United States. We hypothesize that wastewater surveillance programs provide an effective alternative for detecting emerging variants and assessing COVID-19 incidence, particularly when clinical surveillance is limited. Here, we analyzed SARS-CoV-2 RNA in wastewater from eight locations across Southern Nevada between March 2020 and April 2021. Trends in SARS-CoV-2 RNA concentrations (ranging from 4.3 log10 gc/L to 8.7 log10 gc/L) matched trends in confirmed COVID-19 incidence, but wastewater surveillance also highlighted several limitations with the clinical data. Amplicon-based whole genome sequencing (WGS) of 86 wastewater samples identified the B.1.1.7 (Alpha) and B.1.429 (Epsilon) lineages in December 2020, but clinical sequencing failed to identify the variants until January 2021, thereby demonstrating that 'pooled' wastewater samples can sometimes expedite variant detection. Also, by calibrating fecal shedding (11.4 log10 gc/infection) and wastewater surveillance data to reported seroprevalence, we estimate that ~38% of individuals in Southern Nevada had been infected by SARS-CoV-2 as of April 2021, which is significantly higher than the 10% of individuals confirmed through clinical testing. Sewershed-specific ascertainment ratios (i.e., X-fold infection undercounts) ranged from 1.0 to 7.7, potentially due to demographic differences. Our data underscore the growing application of wastewater surveillance in not only the identification and quantification of infectious agents, but also the detection of variants of concern that may be missed when diagnostic testing is limited or unavailable.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , SARS-CoV-2/genética , Estudos Soroepidemiológicos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
7.
Sci Total Environ ; 805: 149930, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536875

RESUMO

In the Fall of 2020, university campuses in the United States resumed on-campus instruction and implemented wastewater monitoring for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While quantitative polymerase chain reaction (qPCR) tests were deployed successfully to detect viral RNA in wastewater across campuses, the feasibility of detecting viral variants from a residential building like a dormitory was unclear. Here, we demonstrate that wastewater surveillance from a dormitory with at least three infected students could lead to the identification of viral genomes with more than 95% coverage. Our results indicate that viral variant detection from wastewater is achievable at a dormitory and that coronavirus disease 2019 (COVID-19) wastewater surveillance programs will benefit from the implementation of viral whole genome sequencing at universities.


Assuntos
COVID-19 , Águas Residuárias , Genômica , Humanos , SARS-CoV-2 , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias
8.
Trends Genet ; 38(1): 12-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340871

RESUMO

Human specific endogenous retrovirus H (HERVH) is highly expressed in both naive and primed stem cells and is essential for pluripotency. Despite the proven relationship between HERVH expression and pluripotency, there is no single definitive model for the function of HERVH. Instead, several hypotheses of a regulatory function have been put forward including HERVH acting as enhancers, long noncoding RNAs (lncRNAs), and most recently as markers of topologically associating domain (TAD) boundaries. Recently several enhancer-associated lncRNAs have been characterized, which bind to Mediator and are necessary for promoter-enhancer folding interactions. We propose a synergistic model of HERVH function combining relevant findings and discuss the current limitations for its role in regulation, including the lack of evidence for a pluripotency-associated target gene.


Assuntos
Retrovirus Endógenos , RNA Longo não Codificante , Retrovirus Endógenos/metabolismo , Elementos Facilitadores Genéticos , Humanos , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo
10.
J Genet Genomics ; 48(1): 40-51, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33820739

RESUMO

Patients with signs of COVID-19 were tested through diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from the nasopharyngeal/nasal swabs. To determine the variants of SARS-CoV-2 circulating in the state of Nevada, specimens from 200 COVID-19 patients were sequenced through our robust sequencing platform, which enabled sequencing of SARS-CoV-2 from specimens with even very low viral loads, without the need of culture-based amplification. High genome coverage allowed the identification of single and multi-nucleotide variants in SARS-CoV-2 in the community and their phylogenetic relationships with other variants present during the same period of the outbreak. We report the occurrence of a novel mutation at 323aa (314aa of orf1b) of nsp12 (RNA-dependent RNA polymerase) changed to phenylalanine (F) from proline (P), in the first reported isolate of SARS-CoV-2, Wuhan-Hu-1. This 323F variant was present at a very high frequency in Northern Nevada. Structural modeling determined this mutation in the interface domain, which is important for the association of accessory proteins required for the polymerase. In conclusion, we report the introduction of specific SARS-CoV-2 variants at very high frequency in distinct geographic locations, which is important for understanding the evolution and circulation of SARS-CoV-2 variants of public health importance, while it circulates in humans.


Assuntos
COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , Genoma Viral/genética , Humanos , Modelos Moleculares , Mutação , Nasofaringe/virologia , Nevada/epidemiologia , Filogenia , Prevalência , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Fluxo de Trabalho
11.
PLoS One ; 16(3): e0248213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684158

RESUMO

Recent plant breeding studies of several species have demonstrated the utility of combining molecular assessments of genetic distance into trait-linked SNP genotyping during the development of parent lines to maximize yield gains due to heterosis. SSRs (Short Sequence Repeats) are the molecular marker of choice to determine genetic diversity, but the methods historically used to sequence them have been burdensome. The ability to analyze SSRs in a higher-throughput manner independent of laboratory conditions would increase their utility in molecular ecology, germplasm curation, and plant breeding programs worldwide. This project reports simple bioinformatics methods that can be used to generate genome-wide de novo SSRs in silico followed by targeted Next Generation Sequencing (NGS) validation of those that provide the most information about sub-population identity of a breeding line, which influences heterotic group selection. While these methods were optimized in sorghum [Sorghum bicolor (L.) Moench], they were developed to be applied to any species with a reference genome and high-coverage whole-genome sequencing data of individuals from the sub-populations to be characterized. An analysis of published sorghum genomes selected to represent its five main races (bicolor, caudatum, durra, kafir, and guinea; 75 accessions total) identified 130,120 SSR motifs. Average lengths were 23.8 bp and 95% were between 10 and 92 bp, making them suitable for NGS. Validation through targeted sequencing amplified 188 of 192 assayed SSR loci. Results highlighted the distinctness of accessions from the guinea sub-group margaritiferum from all other sorghum accessions, consistent with previous studies of nuclear and mitochondrial DNA. SSRs that efficiently fingerprinted margaritiferum individuals (Xgma1 -Xgma6) are presented. Developing similar fingerprints of other sub-populations (Xunr1 -Xunr182) was not possible due to the extensive admixture between them in the data set analyzed. In summary, these methods were able to fingerprint specific sub-populations when rates of admixture between them are low.


Assuntos
DNA de Plantas/genética , Loci Gênicos , Genoma de Planta , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Sequenciamento de Nucleotídeos em Larga Escala
12.
PLoS One ; 16(2): e0245895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534823

RESUMO

Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M. agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M. agassizii strain PS6T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6T and 723, we did not detect any SNP between PS6T and our eight samples. Our whole genome analyses reveal that M. agassizii strain PS6T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.


Assuntos
Clima Desértico , Variação Genética , Mycoplasma/genética , Mycoplasma/fisiologia , Tartarugas/parasitologia , Animais
13.
Insect Biochem Mol Biol ; 129: 103513, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388375

RESUMO

The pinyon ips beetle, Ips confusus (LeConte) is a highly destructive pest in pine forests in western North America. When colonizing a new host tree, I. confusus beetles coordinate a mass attack to overcome the tree's defenses using aggregation pheromones. Ips confusus, as with other Ips spp. beetles, biosynthesize ipsdienol and ipsenol in a specific enantiomeric blend and ratio as aggregation pheromones. While several of the initial steps in the pheromone biosynthetic pathway have been well defined, the final steps were unknown. We used comparative RNA-Seq analysis between fed and unfed male I. confusus midgut tissue to identify candidate genes involved in pheromone biosynthesis. The 12,995 potentially unique transcripts showed a clear separation based on feeding state. Differential expression analysis identified gene groups that were tightly connected. This analysis identified all known pheromone biosynthetic genes and suggested a novel monoterpene double bond reductase, ipsdienone reductase (IDONER), with pheromone biosynthetic gene expression patterns. IDONER cDNA was cloned, expressed, and functionally characterized. The coding DNA sequence has an ORF of 1101 nt with a predicted translation product of 336 amino acids. The enzyme has a molecular weight of 36.7 kDa with conserved motifs of the medium chain dehydrogenases/reductase (MDR) superfamily in the leukotriene B4 dehydrogenases/reductases (LTB4R) family. Tagged recombinant protein was expressed and purified. Enzyme assays and GC/MS analysis showed IDONER catalyzed the reduction of ipsdienone to form ipsenone. This study shows that IDONER is a monoterpene double bond reductase involved in I. confusus pheromone biosynthesis.


Assuntos
Besouros/enzimologia , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Feromônios/biossíntese , Transcriptoma , Animais , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
14.
Plant Reprod ; 34(1): 61-78, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33459869

RESUMO

KEY MESSAGE: Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function, many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress response. The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96% of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a significant role in pollen biology, including the HS response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resposta ao Choque Térmico/genética , Filogenia , Pólen/genética
15.
Lancet Infect Dis ; 21(1): 52-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058797

RESUMO

BACKGROUND: The degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual. METHODS: A 25-year-old man who was a resident of Washoe County in the US state of Nevada presented to health authorities on two occasions with symptoms of viral infection, once at a community testing event in April, 2020, and a second time to primary care then hospital at the end of May and beginning of June, 2020. Nasopharyngeal swabs were obtained from the patient at each presentation and twice during follow-up. Nucleic acid amplification testing was done to confirm SARS-CoV-2 infection. We did next-generation sequencing of SARS-CoV-2 extracted from nasopharyngeal swabs. Sequence data were assessed by two different bioinformatic methodologies. A short tandem repeat marker was used for fragment analysis to confirm that samples from both infections came from the same individual. FINDINGS: The patient had two positive tests for SARS-CoV-2, the first on April 18, 2020, and the second on June 5, 2020, separated by two negative tests done during follow-up in May, 2020. Genomic analysis of SARS-CoV-2 showed genetically significant differences between each variant associated with each instance of infection. The second infection was symptomatically more severe than the first. INTERPRETATION: Genetic discordance of the two SARS-CoV-2 specimens was greater than could be accounted for by short-term in vivo evolution. These findings suggest that the patient was infected by SARS-CoV-2 on two separate occasions by a genetically distinct virus. Thus, previous exposure to SARS-CoV-2 might not guarantee total immunity in all cases. All individuals, whether previously diagnosed with COVID-19 or not, should take identical precautions to avoid infection with SARS-CoV-2. The implications of reinfections could be relevant for vaccine development and application. FUNDING: Nevada IDEA Network of Biomedical Research, and the National Institute of General Medical Sciences (National Institutes of Health).


Assuntos
COVID-19/diagnóstico , Reinfecção/diagnóstico , SARS-CoV-2/genética , Adulto , Genoma Viral , Humanos , Masculino , Filogenia
16.
medRxiv ; 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32869037

RESUMO

Patients with signs of COVID-19 were tested with CDC approved diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from nasopharyngeal/nasal swabs. In order to determine the variants of SARS-CoV-2 circulating in the state of Nevada, 200 patient specimens from COVID-19 patients were sequenced through our robust protocol for sequencing SARS-CoV-2 genomes. Our protocol enabled sequencing of SARS-CoV-2 genome directly from the specimens, with even very low viral loads, without the need of culture-based amplification. This allowed the identification of specific nucleotide variants including those coding for D614G and clades defining mutations. These sequences were further analyzed for determining SARS-CoV-2 variants circulating in the state of Nevada and their phylogenetic relationships with other variants present in the united states and the world during the same period of the outbreak. Our study reports the occurrence of a novel variant in the nsp12 (RNA dependent RNA Polymerase) protein at residue 323 (314aa of orf1b) to Phenylalanine (F) from Proline (P), present in the original isolate of SARS-CoV-2 (Wuhan-Hu-1). This 323F variant is found at a very high frequency (46% of the tested specimen) in Northern Nevada. Functional significance of this unique and highly prevalent variant of SARS-CoV-2 with RdRp mutation is currently under investigation but structural modeling showed this 323aa residue in the interface domain of RdRp, which is required for association with accessory proteins. In conclusion, we report the introduction of specific SARS-CoV-2 variants at a very high frequency within a distinct geographic location, which is important for clinical and public health perspectives in understanding the evolution of SARS-CoV-2 while in circulation.

17.
BMC Plant Biol ; 20(1): 55, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019503

RESUMO

BACKGROUND: Grapevine is an economically important crop for which yield and berry quality is strongly affected by climate change. Large variations in drought tolerance exist across Vitis species. Some of these species are used as rootstock to enhance abiotic and biotic stress tolerance. In this study, we investigated the physiological and transcriptomic responses to water deficit of four different genotypes that differ in drought tolerance: Ramsey (Vitis champinii), Riparia Gloire (Vitis riparia), Cabernet Sauvignon (Vitis vinifera), and SC2 (Vitis vinifera x Vitis girdiana). RESULTS: Ramsey was particularly more drought tolerant than the other three genotypes. Ramsey maintained a higher stomatal conductance and photosynthesis at equivalent levels of moderate water deficit. We identified specific and common transcriptomic responses shared among the four different Vitis species using RNA sequencing analysis. A weighted gene co-expression analysis identified a water deficit core gene set with the ABA biosynthesis and signaling genes, NCED3, RD29B and ABI1 as potential hub genes. The transcript abundance of many abscisic acid metabolism and signaling genes was strongly increased by water deficit along with genes associated with lipid metabolism, galactinol synthases and MIP family proteins. This response occurred at smaller water deficits in Ramsey and with higher transcript abundance than the other genotypes. A number of aquaporin genes displayed differential and unique responses to water deficit in Ramsey leaves. Genes involved in cysteine biosynthesis and metabolism were constitutively higher in the roots of Ramsey; thus, linking the gene expression of a known factor that influences ABA biosynthesis to this genotype's increased NCED3 transcript abundance. CONCLUSION: The drought tolerant Ramsey maintained higher photosynthesis at equivalent water deficit than the three other grapevine genotypes. Ramsey was more responsive to water deficit; its transcriptome responded at smaller water deficits, whereas the other genotypes did not respond until more severe water deficits were reached. There was a common core gene network responding to water deficit for all genotypes that included ABA metabolism and signaling. The gene clusters and sub-networks identified in this work represent interesting gene lists to explore and to better understand drought tolerance molecular mechanisms.


Assuntos
Ácido Abscísico/metabolismo , Secas , Fotossíntese , Transdução de Sinais , Transcriptoma , Vitis/fisiologia , Genótipo , Estresse Fisiológico/genética , Vitis/genética
18.
BMC Genomics ; 19(1): 549, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041596

RESUMO

BACKGROUND: In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific Cyclic Nucleotide-Gated cation Channel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. RESULTS: Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. CONCLUSIONS: Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Resposta ao Choque Térmico/genética , Pólen/genética , Transcriptoma , Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Técnicas de Inativação de Genes , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Stand Genomic Sci ; 13: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725499

RESUMO

Mycoplasma agassizii is one of the known causative agents of upper respiratory tract disease (URTD) in Mojave desert tortoises (Gopherus agassizii) and in gopher tortoises (Gopherus polyphemus). We sequenced the genomes of M. agassizii strains PS6T (ATCC 700616) and 723 (ATCC 700617) isolated from the upper respiratory tract of a Mojave desert tortoise and a gopher tortoise, respectively, both with signs of URTD. The PS6T genome assembly was organized in eight scaffolds, had a total length of 1,274,972 bp, a G + C content of 28.43%, and contained 979 protein-coding genes, 13 pseudogenes and 35 RNA genes. The 723 genome assembly was organized in 40 scaffolds, had a total length of 1,211,209 bp, a G + C content of 28.34%, and contained 955 protein-coding genes, seven pseudogenes, and 35 RNA genes. Both genomes exhibit a very similar organization and very similar numbers of genes in each functional category. Pairs of orthologous genes encode proteins that are 93.57% identical on average. Homology searches identified a putative cytadhesin. These genomes will enable studies that will help understand the molecular bases of pathogenicity of this and other Mycoplasma species.

20.
Stand Genomic Sci ; 13: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682170

RESUMO

Mycoplasma testudineum is one of the pathogens that can cause upper respiratory tract disease in desert tortoises, Gopherus agassizii. We sequenced the genome of M. testudineum BH29T (ATCC 700618T = MCCM 03231T), isolated from the upper respiratory tract of a Mojave desert tortoise with upper respiratory tract disease. The sequenced draft genome, organized in 25 scaffolds, has a length of 960,895 bp and a G + C content of 27.54%. A total of 788 protein-coding sequences, six pseudogenes and 35 RNA genes were identified. The potential presence of cytadhesin-encoding genes is investigated. This genome will enable comparative genomic studies to help understand the molecular bases of the pathogenicity of this and other Mycoplasma species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...