Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757765

RESUMO

Nanopore sensing is a popular biosensing strategy that is being explored for the quantitative analysis of biomarkers. With low concentrations of analytes, nanopore sensors face challenges related to slow response times and selectivity. Here, we demonstrate an approach to rapidly detect species at ultralow concentrations using an optical nanopore blockade sensor for quantitative detection of the protein vascular endothelial growth factor (VEGF). This sensor relies on monitoring fluorescent polystyrene nanoparticles blocking nanopores in a nanopore array of 676 nanopores. The fluorescent signal is read out using a wide-field fluorescence microscope. Nonspecific blockade events are then distinguished from specific blockade events based on the ability to pull the particles out of the pore using an applied electric field. This allows the detection of VEGF at sub-picomolar concentration in less than 15 min.

2.
Nanomedicine (Lond) ; 19(4): 303-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270934

RESUMO

Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.


MRI is a powerful tool used in the diagnosis of cancer, strokes and other injuries. An MRI scan can be improved with the use of iron oxide nanoparticles, which enhance the contrast of the image. In this study we have developed cube-shaped iron nanoparticles (nanocubes), which have been previously shown to be more effective at inducing contrast. We demonstrated that iron-based nanocubes do not damage or induce stress in cells and work effectively as an MRI contrast agent. We further analyzed how the nanocubes may affect cell functioning by investigating changes to protein levels in the cells. The results of this study are promising steps towards using iron-based nanocubes as a tool to improve the clarity of MRI scans for medical imaging and diagnosis. Future work must determine whether these nanocubes work effectively and safely in an animal model, which is a critical step in progressing to their use in clinical settings.


Assuntos
Glioblastoma , Nanopartículas de Magnetita , Humanos , Ferro , Nanopartículas de Magnetita/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Proteômica , Compostos Férricos/química , Linhagem Celular , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Succímero/química
3.
Small ; : e2309924, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263808

RESUMO

The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5 Zr0.5 O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.

4.
Adv Mater ; 36(10): e2211288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37017492

RESUMO

Nanozymes mimic enzymes and that includes their selectivity. To achieve selectivity, significant inspiration for nanoparticle design can come from the geometric and molecular features that make enzymes selective catalysts. The two central features enzymes use are control over the arrangement of atoms in the active site and the placing of the active site down a nanoconfined substrate channel. The implementation of enzyme-inspired features has already been shown to both improve activity and selectivity of nanoparticles for a variety of catalytic and sensing applications. The tuning and control of active sites on metal nanoparticle surfaces ranges from simply changing the composition of the surface metal to sophisticated approaches such as the immobilization of single atoms on a metal substrate. Molecular frameworks provide a powerful platform for the implementation of isolated and discrete active sites while unique diffusional environments further improve selectivity. The implementation of nanoconfined substrate channels around these highly controlled active sites offers further ability to control selectivity through altering the solution environment and transport of reactants and products. Implementing these strategies together offers a unique opportunity to improve nanozyme selectivity in both sensing and catalysis.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Catálise , Domínio Catalítico
5.
Int J Biol Macromol ; 254(Pt 2): 127695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913877

RESUMO

The use of water-dispersible and sustainable Pd nanocatalysts to reduce toxic heavy metal ions and catalyze important organic reactions has profound significance for the environmental remediation and the catalytic industry. In this work, a novel water-dispersible and recyclable Pd@LNPs nanoreactor composed of Pd nanoparticle cluster core and LNPs shell was developed in microwave reactor in aqueous solution. It turned out that Pd nanoparticles grew uniformly and stably inside LNPs nanosphere due to the coordinated binding and interaction between Pd and the functional groups in LNPs, which was significantly different from surface loading. The green and biodegradable LNPs nanospheres are not only used as reducing agents for Pd (II) and nanocarriers, but also act as individual nanocontainers to provide favorable sites for reactions and effectively control the entry and release of reactants and products. Furthermore, the excellent and efficient catalytic properties of Pd@LNPs were exhibited by CC coupling reactions and the reduction of Cr(VI) and 4-nitrophenol. The Pd@LNPs prepared in this study have the advantages of excellent dispersion, great recyclability, high turnover frequency and better green sustainability metrics. It will have a great significance for the development of the potential high-value of lignin and the progress in the field of bio-nanocatalysts.


Assuntos
Nanopartículas , Nanosferas , Paládio/química , Nanotecnologia
6.
Analyst ; 149(2): 269-289, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015145

RESUMO

Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Técnicas Biossensoriais/métodos , Eletrodos , Espectroscopia Dielétrica/métodos , Técnicas Eletroquímicas
7.
ACS Nano ; 17(22): 22299-22312, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37944052

RESUMO

The recent breakthrough in confining five or more atomic species in nanocatalysts, referred to as high-entropy alloy nanocatalysts (HEAs), has revealed the possibilities of multielemental interactions that can surpass the limitations of binary and ternary electrocatalysts. The wide range of potential surface configurations in HEAs, however, presents a significant challenge in resolving active structural motifs, preventing the establishment of structure-function relationships for rational catalyst design and optimization. We present a methodology for creating sub-5 nm HEAs using an aqueous-based peptide-directed route. Using a combination of pair distribution function and X-ray absorption spectroscopy, HEA structure models are constructed from reverse Monte Carlo modeling of experimental data sets and showcase a clear peptide-induced influence on atomic-structure and chemical miscibility. Coordination analysis of our structure models facilitated the construction of structure-function correlations applied to electrochemical methanol oxidation reactions, revealing the complex interplay between multiple metals that leads to improved catalytic properties. Our results showcase a viable strategy for elucidating structure-function relationships in HEAs, prospectively providing a pathway for future materials design.

8.
ACS Appl Bio Mater ; 6(11): 4603-4612, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844275

RESUMO

In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Matriz Extracelular , Vidro , Células MCF-7
9.
Nat Commun ; 14(1): 6604, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872151

RESUMO

Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine.


Assuntos
Hidrogéis , Triptofano , Humanos , Triptofano/química , Hidrogéis/química , Peptídeos/química , Biotecnologia , Organoides
10.
Cells ; 12(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759500

RESUMO

Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aß) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aß antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.

11.
Biosens Bioelectron ; 238: 115577, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579531

RESUMO

Affinity biosensors play a crucial role in clinical diagnosis, pharmaceuticals, immunology, and other areas of human health. Affinity biosensors rely on the specific binding between target analytes and biological ligands such as antibodies, nucleic acids, aptamers, or other receptors to primarily generate electrochemical or optical signals. Considerable effort has been put into improving the performance of the affinity technologies to make them more sensitive, efficient and reproducible, of the many approaches electrokinetic phenomena are a viable option. In this perspective, studies that combine electrokinetic phenomena with affinity biosensor are discussed about their promise for achieving higher sensitivity and lower detection limit.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Anticorpos , Ligantes
12.
Biosens Bioelectron ; 237: 115467, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437456

RESUMO

Switchable fluorescent proteins, for which fluorescence can be switched ON and OFF, are widely used for molecule tracking and super resolution imaging. However, the robust use of the switchable fluorescent proteins is still limited as either the switching is not repeatable, or such switching requires irradiation with coupled lasers of different wavelengths. Herein, we report an electrochemical approach to reversible fluorescence switching for enhanced green fluorescent proteins (EGFP) on indium tin oxide coated glass. Our results demonstrate that negative and positive electrochemical potentials can efficiently switch the fluorescent proteins between the dim (OFF) and bright (ON) states at the single molecule level. The electrochemical fluorescence switching is fast, reversible, and may be performed up to hundreds of cycles before photobleaching occurs. These findings highlight that this method of electrochemical fluorescence switching can be incorporated into advanced fluorescence microscopy.

13.
J Phys Chem C Nanomater Interfaces ; 127(1): 289-299, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37342618

RESUMO

Enzymes with multiple distinct active sites linked by substrate channels combined with control over the solution environment near the active sites enable the formation of complex products from simple reactants via the confinement of intermediates. We mimic this concept to facilitate the electrochemical carbon dioxide reduction reaction using nanoparticles with a core that produces intermediate CO at different rates and a porous copper shell. CO2 reacts at the core to produce CO which then diffuses through the Cu to give higher order hydrocarbon molecules. By altering the rate of CO2 delivery, the activity of the CO producing site, and the applied potential, we show that the nanoparticle with lower activity for CO formation produces greater amounts of hydrocarbon products. This is attributed to a combination of higher local pH and the lower amount of CO, resulting in more stable nanoparticles. However, when lower amounts of CO2 were delivered to the core, the particles that are more active for CO formation produce more C3 products. The importance of these results is twofold. They show that in cascade reactions, more active intermediate producing catalysts do not necessarily give greater amounts of high-value products. The effect an intermediate producing active site has on the local solution environment around the secondary active site plays an important role. As the less active catalyst for producing CO also possesses greater stability, we show that nanoconfinement can be used to get the best of both worlds with regard to having a stable catalyst with high activity.

15.
Anal Chem ; 95(16): 6550-6558, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036670

RESUMO

Plasmonic nanoparticles are finding applications within the single molecule sensing field in a "dimer" format, where interaction of the target with hairpin DNA causes a decrease in the interparticle distance, leading to a localized surface plasmon resonance shift. While this shift may be detected using spectroscopy, achieving statistical relevance requires the measurement of thousands of nanoparticle dimers and the timescales required for spectroscopic analysis are incompatible with point-of-care devices. However, using dark-field imaging of the dimer structures, simultaneous digital analysis of the plasmonic resonance shift after target interaction of thousands of dimer structures may be achieved in minutes. The main challenge of this digital analysis on the single-molecule scale was the occurrence of false signals caused by non-specifically bound clusters of nanoparticles. This effect may be reduced by digitally separating dimers from other nanoconjugate types. Variation in image intensity was observed to have a discernible impact on the color analysis of the nanoconjugate constructs and thus the accuracy of the digital separation. Color spaces wherein intensity may be uncoupled from the color information (hue, saturation, and value (HSV) and luminance, a* vector, and b* vector (LAB) were contrasted to a color space which cannot uncouple intensity (RGB) to train a classifier algorithm. Each classifier algorithm was validated to determine which color space produced the most accurate digital separation of the nanoconjugate types. The LAB-based learning classifier demonstrated the highest accuracy for digitally separating nanoparticles. Using this classifier, nanoparticle conjugates were monitored for their plasmonic color shift after interaction with a synthetic RNA target, resulting in a platform with a highly accurate yes/no response with a true positive rate of 88% and a true negative rate of 100%. The sensor response of tested single stranded RNA (ssRNA) samples was well above control responses for target concentrations in the range of 10 aM-1 pM.


Assuntos
Nanoconjugados , Ressonância de Plasmônio de Superfície , Cor , Aprendizado de Máquina , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos
16.
Sci Adv ; 9(2): eadf6075, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630515

RESUMO

3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.

17.
Biomacromolecules ; 24(1): 57-68, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36514252

RESUMO

Hydrogels that serve as native extracellular matrix (ECM) mimics are typically naturally derived hydrogels that are physically cross-linked via ionic interactions. This means rapid gelation of synthetic polymers, which give control over the chemical and physical cues in hydrogel formation. Herein, we combine the best of both systems by developing a synthetic hydrogel with ionic cross-linking of block copolyelectrolytes to rapidly create hydrogels. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to synthesize oppositely charged polyelectrolyte molecules and, in turn, modulate the mechanical property of stiffness. The mechanical stiffness of a range of 900-3500 Pa was tuned by varying the number of charged ionic groups, the length of the polymer arms, and the polymer concentration. We demonstrate the synthetic polyelectrolyte hydrogel as an ECM mimic for three-dimensional (3D) in vitro cell models using MCF-7 breast cancer cells.


Assuntos
Matriz Extracelular , Hidrogéis , Hidrogéis/química , Polieletrólitos , Matriz Extracelular/química , Polímeros/farmacologia , Polímeros/química , Técnicas de Cultura de Células em Três Dimensões
18.
Anal Methods ; 14(46): 4861-4866, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408664

RESUMO

Gold coated magnetic nanoparticles (Au@MNPs), modified with DNA sequences give dispersible electrodes that can detect ultralow amounts of microRNAs and other nucleic acids but, as with most other sensors, they require calibration. Herein we show how to adapt a calibration free approach for electrochemical aptamer-based sensors on bulk electrodes to microRNA (miR-21) detection with methylene blue terminated DNA modified Au@MNPs. The electrochemical square wave voltammetry signal from the DNA-Au@MNPs when collected at a bulk electrode under magnetic control, decreases upon capture of miR-21. We show that the square wave voltammogram has concentration dependent and independent frequencies that can be used to give a calibration free signal.


Assuntos
Nanopartículas de Magnetita , MicroRNAs , Ouro , DNA , Eletrodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-36300690

RESUMO

Glioblastoma is hard to be eradicated partly because of the obstructive blood-brain barrier (BBB) and the dynamic autophagy activities of glioblastoma. Here, hydroxychloroquine (HDX)-loaded yolk-shell upconversion nanoparticle (UCNP)@Zn0.5Cd0.5S nanoparticle coating with the cyclic Arg-Gly-Asp (cRGD)-grafted glioblastoma cell membrane for near-infrared (NIR)-triggered treatment of glioblastoma is prepared for the first time. UCNPs@Zn0.5Cd0.5S (abbreviated as YSN, yolk-shell nanoparticle) under NIR radiation will generate reactive oxygen species for imposing cytotoxicity. HDX, the only available autophagy inhibitor in clinical studies, can enhance cytotoxicity by preventing damaged organelles from being recycled. The cRGD-decorated cell membrane allowed the HDX-loaded nanoparticles to efficiently bypass the BBB and specifically target glioblastoma cells. Exceptional treatment efficacy of the NIR-triggered chemotherapy and photodynamic therapy was achieved in U87 cells and in the mouse glioblastoma model as well. Our results provided proof-of-concept evidence that HDX@YSN@CCM@cRGD could overcome the delivery barriers and achieve targeted treatment of glioblastoma.

20.
Chem Soc Rev ; 51(17): 7531-7559, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938511

RESUMO

Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose , Nanopartículas/química , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...