Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Genome Biol ; 25(1): 99, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637899

RESUMO

Spatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos , Biologia
2.
Cancer Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657108

RESUMO

Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared to non-malignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, while silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function for medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance.

3.
Lancet Oncol ; 25(3): 317-325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342115

RESUMO

BACKGROUND: The androgen receptor is a tumour suppressor in oestrogen receptor-positive breast cancer. The activity and safety of enobosarm, an oral selective androgen receptor modulator, was evaluated in women with oestrogen receptor (ER)-positive, HER2-negative, and androgen receptor (AR)-positive disease. METHODS: Women who were postmenopausal (aged ≥18 years) with previously treated ER-positive, HER2-negative, locally advanced or metastatic breast cancer with an Eastern Cooperative Oncology Group performance status of 0-2 were enrolled in a randomised, open-label, multicentre, multinational, parallel design, phase 2 trial done at 35 cancer treatment centres in nine countries. Participants were stratified on the setting of immediately preceding endocrine therapy and the presence of bone-only metastasis and randomly assigned (1:1) to 9 mg or 18 mg oral enobosarm daily using an interactive web response system. The primary endpoint was clinical benefit rate at 24 weeks in those with centrally confirmed AR-positive disease (ie, the evaluable population). This trial is registered with ClinicalTrials.gov (NCT02463032). FINDINGS: Between Sept 10, 2015, and Nov 28, 2017, 136 (79%) of 172 patients deemed eligible were randomly assigned to 9 mg (n=72) or 18 mg (n=64) oral enobosarm daily. Of these 136 patients, 102 (75%) patients formed the evaluable population (9 mg, n=50; 18 mg, n=52). The median age was 60·5 years (IQR 52·3-69·3) in the 9 mg group and 62·5 years (54·0-69·3) in the 18 mg group. The median follow-up was 7·5 months (IQR 2·9-14·1). At 24 weeks, 16 (32%, 95% CI 20-47) of 50 in the 9 mg group and 15 (29%, 17-43) of 52 in the 18 mg group had clinical benefit. Six (8%) of 75 patients who received 9 mg and ten (16%) of 61 patients who received 18 mg had grade 3 or grade 4 drug-related adverse events, most frequently increased hepatic transaminases (three [4%] of 75 in the 9 mg group and two [3%] of 61 in the 18 mg group), hypercalcaemia (two [3%] and two [3%]), and fatigue (one [1%] and two [3%]). Four deaths (one in the 9 mg group and three in the 18 mg group) were deemed unrelated to the study drug. INTERPRETATION: Enobosarm has anti-tumour activity in patients with ER-positive, HER2-negative advanced breast cancer, showing that AR activation can result in clinical benefit, supporting further clinical investigation of selective AR activation strategies for the treatment of AR-positive, ER-positive, HER2-negative advanced breast cancer. FUNDING: GTx.


Assuntos
Anilidas , Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Receptores Androgênicos/genética , Receptores de Estrogênio , Idoso
4.
Genome Biol ; 25(1): 44, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317241

RESUMO

BACKGROUND: The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS: The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS: AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.


Assuntos
Neoplasias da Mama , Fator de Transcrição GATA3 , Receptores Androgênicos , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Fenótipo , Proteômica , Receptores Androgênicos/genética
5.
Oncogene ; 43(3): 202-215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001268

RESUMO

Targeted therapy for triple-negative breast cancers (TNBC) remains a clinical challenge due to tumour heterogeneity. Since TNBC have key features of transcriptionally addicted cancers, targeting transcription via regulators such as cyclin-dependent kinase 9 (CDK9) has potential as a therapeutic strategy. Herein, we preclinically tested a new selective CDK9 inhibitor (CDDD11-8) in TNBC using cell line, patient-derived organoid, and patient-derived explant models. In vitro, CDDD11-8 dose-dependently inhibited proliferation (IC50 range: 281-734 nM), induced cell cycle arrest, and increased apoptosis of cell lines, which encompassed the three major molecular subtypes of TNBC. On target inhibition of CDK9 activity was demonstrated by reduced RNAPII phosphorylation at a CDK9 target peptide and down-regulation of the MYC and MCL1 oncogenes at the mRNA and protein levels in all cell line models. Drug induced RNAPII pausing was evident at gene promoters, with strongest pausing at MYC target genes. Growth of five distinct patient-derived organoid models was dose-dependently inhibited by CDDD11-8 (IC50 range: 272-771 nM), including three derived from MYC amplified, chemo-resistant TNBC metastatic lesions. Orally administered CDDD11-8 also inhibited growth of mammary intraductal TNBC xenograft tumours with no overt toxicity in vivo (mice) or ex vivo (human breast tissues). In conclusion, our studies indicate that CDK9 is a viable therapeutic target in TNBC and that CDDD11-8, a novel selective CDK9 inhibitor, has efficacy in TNBC without apparent toxicity to normal tissues.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Quinase 9 Dependente de Ciclina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
EMBO Mol Med ; 15(12): e17737, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37902007

RESUMO

Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
J Med Chem ; 66(15): 10354-10363, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37489955

RESUMO

Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.


Assuntos
Peptidomiméticos , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Peptidomiméticos/farmacologia , Replicação do DNA , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fluoresceínas
8.
Cell Genom ; 3(3): 100272, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950379

RESUMO

Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.

9.
Cancer Res Commun ; 2(7): 706-724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36923279

RESUMO

Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a "viral mimicry" response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies. Significance: Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Receptores Androgênicos/genética , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Linfócitos T CD8-Positivos/metabolismo , DNA
10.
Nat Commun ; 12(1): 6377, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737261

RESUMO

Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Células Neuroendócrinas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptor ErbB-2/metabolismo , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Estadiamento de Neoplasias , Células Neuroendócrinas/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais , Ativação Transcricional
11.
RSC Chem Biol ; 2(5): 1499-1508, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704055

RESUMO

The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 310-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143-151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K D values ranging from 570 nM to 3.86 µM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 310-helical binding conformation. This suggests the 310-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.

12.
Nat Cell Biol ; 23(9): 1023-1034, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489572

RESUMO

Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/fisiologia
13.
Cancer Res ; 81(19): 4981-4993, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362796

RESUMO

Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues (n = 21), independent unmatched tissues (n = 47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n = 43). Significant differences in lipid composition were detected and spatially visualized in tumors compared with matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting. SIGNIFICANCE: This study identifies malignancy and treatment-associated changes in lipid composition of clinical prostate cancer tissues, suggesting that mediators of these lipidomic changes could be targeted using existing metabolic agents.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Lipídeos de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Biomarcadores , Biologia Computacional/métodos , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Masculino , Metabolômica/métodos , Terapia de Alvo Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/etiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
14.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208794

RESUMO

While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.

15.
Br J Cancer ; 125(12): 1599-1601, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34294894

RESUMO

Most breast cancers are driven by oncogenic activity of the estrogen receptor alpha (ER). Resistance to ER target therapies is the major cause of breast cancer death. Recently, there has been renewed interest in targeting the androgen receptor (AR) to treat ER-driven breast cancers. Herein, we discuss evidence for an AR agonist, not antagonist, treatment strategy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Feminino , Humanos
16.
SLAS Discov ; 26(9): 1107-1124, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111999

RESUMO

New treatments are required for advanced prostate cancer; however, there are fewer preclinical models of prostate cancer than other common tumor types to test candidate therapeutics. One opportunity to increase the scope of preclinical studies is to grow tissue from patient-derived xenografts (PDXs) as organoid cultures. Here we report a scalable pipeline for automated seeding, treatment and an analysis of the drug responses of prostate cancer organoids. We established organoid cultures from 5 PDXs with diverse phenotypes of prostate cancer, including castrate-sensitive and castrate-resistant disease, as well as adenocarcinoma and neuroendocrine pathology. We robotically embedded organoids in Matrigel in 384-well plates and monitored growth via brightfield microscopy before treatment with poly ADP-ribose polymerase inhibitors or a compound library. Independent readouts including metabolic activity and live-cell imaging-based features provided robust measures of organoid growth and complementary ways of assessing drug efficacy. Single organoid analyses enabled in-depth assessment of morphological differences between patients and within organoid populations and revealed that larger organoids had more striking changes in morphology and composition after drug treatment. By increasing the scale and scope of organoid experiments, this automated assay complements other patient-derived models and will expedite preclinical testing of new treatments for prostate cancer.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Imagem Molecular/métodos , Organoides , Técnicas de Cultura de Tecidos , Algoritmos , Animais , Automação Laboratorial , Análise de Dados , Modelos Animais de Doenças , Composição de Medicamentos , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata
18.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547161

RESUMO

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Assuntos
Elongases de Ácidos Graxos/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Rep ; 34(1): 108585, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406413

RESUMO

Potent therapeutic inhibition of the androgen receptor (AR) in prostate adenocarcinoma can lead to the emergence of neuroendocrine prostate cancer (NEPC), a phenomenon associated with enhanced cell plasticity. Here, we show that microRNA-194 (miR-194) is a regulator of epithelial-neuroendocrine transdifferentiation. In clinical prostate cancer samples, miR-194 expression and activity were elevated in NEPC and inversely correlated with AR signaling. miR-194 facilitated the emergence of neuroendocrine features in prostate cancer cells, a process mediated by its ability to directly target a suite of genes involved in cell plasticity. One such target was FOXA1, which encodes a transcription factor with a vital role in maintaining the prostate epithelial lineage. Importantly, a miR-194 inhibitor blocked epithelial-neuroendocrine transdifferentiation and inhibited the growth of cell lines and patient-derived organoids possessing neuroendocrine features. Overall, our study reveals a post-transcriptional mechanism regulating the plasticity of prostate cancer cells and provides a rationale for targeting miR-194 in NEPC.


Assuntos
Transdiferenciação Celular , Fator 3-alfa Nuclear de Hepatócito/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Células PC-3 , Transdução de Sinais
20.
Nat Med ; 27(2): 310-320, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462444

RESUMO

The role of the androgen receptor (AR) in estrogen receptor (ER)-α-positive breast cancer is controversial, constraining implementation of AR-directed therapies. Using a diverse, clinically relevant panel of cell-line and patient-derived models, we demonstrate that AR activation, not suppression, exerts potent antitumor activity in multiple disease contexts, including resistance to standard-of-care ER and CDK4/6 inhibitors. Notably, AR agonists combined with standard-of-care agents enhanced therapeutic responses. Mechanistically, agonist activation of AR altered the genomic distribution of ER and essential co-activators (p300, SRC-3), resulting in repression of ER-regulated cell cycle genes and upregulation of AR target genes, including known tumor suppressors. A gene signature of AR activity positively predicted disease survival in multiple clinical ER-positive breast cancer cohorts. These findings provide unambiguous evidence that AR has a tumor suppressor role in ER-positive breast cancer and support AR agonism as the optimal AR-directed treatment strategy, revealing a rational therapeutic opportunity.


Assuntos
Androgênios/farmacologia , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptores Androgênicos/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Feminino , Humanos , Células MCF-7 , Coativador 3 de Receptor Nuclear/genética , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...