Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol ; 84: 27-32, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31494259

RESUMO

Previously we have shown that in autoimmune hepatitis CD4 positive lymphocytes form an immunologic synapse with hepatocytes, leading to gradual diminishing and elimination of the hepatocyte. We wondered whether a similar mechanism may occur in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). We conducted immunofluorescence studies of expression of MHCII, the binding partner of CD4, on patient liver biopsies of AH, NASH, and normal controls. In cases of alcoholic hepatitis, there was prominent sinusoidal expression of MHC II; In NASH biopsies there was comparatively lower expression of MHC II, but still more than control tissue. Immunohistochemical stain for CD4 showed CD4 positive lymphocytes closely associated with hepatocytes in AH biopsies. Furthermore, expression levels of the multifunctional cytokine IL-1α was higher in AH compared to NASH and control biopsies. These results underlie the more severe nature of alcoholic hepatitis and underscore the autoimmune mechanisms involved in the liver damage found in alcoholic hepatitis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hepatite Alcoólica/imunologia , Hepatócitos/patologia , Antígenos de Histocompatibilidade Classe II/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Biópsia , Imunofluorescência , Humanos , Imuno-Histoquímica , Interleucina-1alfa/imunologia
2.
Exp Mol Pathol ; 108: 156-163, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951700

RESUMO

As the fifth most common cancer and the second leading cause of cancer related deaths worldwide, hepatocellular carcinoma (HCC) causes up to one million deaths annually. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are becoming the two major risk factors because both may develop liver fibrosis and hepatocellular carcinoma (HCC) if left untreated. However, compared with 3-10% of patients with ASH may progress to HCC annually, about only 0.5% NASH patients may progress to HCC annually. The present study is to clarify the protein expression differences of tumor suppressor genes (TSGs) between ASH and NASH. In liver biopsied specimens from NASH and ASH patients, using an immunofluorescence method and morphometrically quantitating the fluorescence intensity, we studied the protein expression within hepatocytes cytoplasm of candidate TSGs including RUNX3, GSTP1, and RASSF1A. Compared with the control group of patients, the expression levels of all three proteins were upregulated in the ASH group of patients (p < .001 in all molecules). While RUNX3 was upregulated, GSTP1 and RASSF1 did not change in the NASH group of patients. The most important finding is that compared with the ASH group of patients, the expression levels of all three TSG proteins, RUNX3, GSTP1, and RASSF1, were significantly lower in the NASH group of patients (p < .001 in all three molecules). These results confirmed our previous finding that there are significant differences of many molecules including TSGs that changed in NASH compared to ASH. Thus, we conclude that there are significantly different TSGs and pathways involved during the pathogenesis of HCC development in NASH compared to ASH that may help to develop different strategies for prevention and treatment of NASH and ASH patients.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Glutationa S-Transferase pi/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Fígado Gorduroso Alcoólico/diagnóstico , Imunofluorescência/métodos , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico
3.
Exp Mol Pathol ; 105(1): 144-149, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009772

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer related deaths worldwide. Among others, non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the two major risk factors as both of them may develop cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, patients with NASH progress to HCC at a rate around 0.5% annually, while 3-10% ASH patients may progress to HCC annually. The present study is to demonstrate the molecular differences in oncogenesis pathway between NASH and ASH. By using immunofluorescence study and quantitating the fluorescence intensity morphometrically in liver biopsied specimens from NASH and ASH patients, the protein expression of candidate molecules within hepatocytes cytoplasm are studied, including two HCC-related molecules FAT10 and FOXO1, and one GPCR pathway related molecule ADRA2A. Compared with the control group patients, the expression levels of all the molecules were upregulated in the ASH group of patients (p < 0.001 in all molecules), while FAT10 and ADRA2A were upregulated, FOXO1 did not change in the NASH group of patients. The most important finding is that compared with the ASH group of patients, the expression levels of all three molecules were significantly lower than in the NASH group of patients (p < 0.001 in all molecules). These results confirmed our previous finding that there are significant differences of molecules change in ASH compared to NASH. Thus, we conclude that there are significantly different molecules and pathways involved during the pathogenesis of HCC development in ASH compared to NASH which could help explain why the tumorigenic rate is different in ASH and NASH.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/etiologia , Fígado Gorduroso Alcoólico/complicações , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Carcinogênese/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Exp Mol Pathol ; 104(2): 125-129, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29425759

RESUMO

Both non-alcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) can lead to cirrhosis and hepatocellular carcinoma. However, the rate of progression to cirrhosis and tumorigenesis in AH is greater than that in NASH. We asked whether there are differences between the two conditions in the expression levels of proteins involved in the pathogenesis of hepatocellular carcinoma. The proteins tested were presented at the 2017 American Association for the Study of Liver Diseases (AASLD) Liver Meeting as overexpressed in hepatocellular carcinoma: KLF4, SCL19A1, FANCG, HRH-1, DNMT1, DNMT3B, TNFR2, DUSP4, EGFR, Integrin α6, HDACII, PDE3A, BCL-XL, and MTCO2. The expression of these proteins was measured in liver biopsy sections from NASH and AH patients using immunohistochemical staining with fluorescent antibodies and then quantifying the fluorescence intensity morphometrically. In AH patients, levels of all tested proteins except HRH-1 were elevated compared to normal patients. In NASH patients, KLF4, SCL19A1, FANCG, HDACII, BCL-XL levels were increased compared to normal controls while HRH-1, DNMT1 and PDE3A levels were decreased. The relative expression of all proteins studied except BCL-XL was significantly higher in AH compared to NASH. In conclusion, proteins involved in hepatocellular cancer development are more highly expressed in AH compared to NASH and normal liver, which corresponds with the higher rate of tumorigenesis in AH patients compared to NASH patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatite Alcoólica/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas/metabolismo , Carcinoma Hepatocelular/complicações , Humanos , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Valores de Referência , Regulação para Cima
5.
Exp Mol Pathol ; 104(1): 45-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307797

RESUMO

Non-alcoholic steatohepatitis (NASH) is commonly associated with obesity, type 2 diabetes, and/or hypertriglyceridemia, while alcoholic steatohepatitis (ASH) is associated with alcohol abuse. Both NASH and ASH patients can develop cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, the rate of tumorigenesis in NASH and ASH appears to be different. Individuals with NASH progress to HCC at a rate of 0.5% annually (Lindenmeyer and McCullough, 2018), when individuals with ASH progress to HCC at a rate of 3-10% annually (Schwartz and Reinus, 2012). Thus, the objective of our study is to determine if there are differences in NASH versus ASH in the levels of different proteins expressed involved in cancer development. The method used was measuring the proteins expressed in liver biopsied sections from NASH and ASH patients using immunohistochemical staining with fluorescent antibodies and then quantitating the fluorescence intensity morphometrically. The 20 proteins tested are parts of the Ingenuity Canonical Pathway of Molecular Mechanisms of Cancer and include: RAP2B, NAIP, FYN, PAK6, SUV39H1, GNAI1, BAX, E2F3, CKDN2B, BAK1, BCL2, DIABLO, RASGRF2, GNA15, PIK3CB, BRCA1, MAP2K1, BIRC3, CDK2, and ATM. In ASH, the proteins that showed upregulated levels of expression were SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1. In NASH, the proteins that showed upregulated levels of expression were BAK1 and GNAI1 and the protein that showed downregulated level of expression was BCL2. Additionally, levels of expression for SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1 were significant upregulated in ASH compared to NASH. These results showed significant differences in ASH compared to normal liver, and significant differences in ASH compared to NASH. Thus, we conclude that there are more proteins involved in tumorigenesis in ASH compared to NASH and in ASH compared to normal liver, which is consistent with the known tumor development rate in ASH and NASH.


Assuntos
Hepatite Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biópsia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Hepatite Alcoólica/genética , Hepatite Alcoólica/patologia , Humanos , Imuno-Histoquímica/métodos , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Obesidade/patologia
6.
Biomolecules ; 7(1)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208700

RESUMO

The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory-Denk body (MDB) formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase) and CHOP (CCAAT/enhancer-binding protein homologous protein) mechanisms were upregulated. IN CONCLUSION: Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs) still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress.


Assuntos
Hepatite Alcoólica/etiologia , Hepatite Alcoólica/metabolismo , Proteínas/metabolismo , Animais , Autofagia , Estresse do Retículo Endoplasmático , Hepatite Alcoólica/patologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
7.
Oncotarget ; 6(40): 42491-503, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26623723

RESUMO

Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. Liver injury from alcohol administration causes balloon hepatocytes and MDB formation impeding liver regeneration. By comparing AH livers where MDBs had formed with normal liver transcriptomes obtained by RNA sequencing (RNA-Seq), there was significant upregulation of BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. The transcriptional architecture of differentially expressed genes from AH livers reflected step-wise transcriptional changes progressing to AH. Key molecules such as BRCA1, p15 and p21 were significantly upregulated both in AH livers and in the livers of the DDC re-fed mice model where MDBs had formed. The increase of G1/S cell cycle checkpoint inhibitors p15 and p21 results in cell cycle arrest and inhibition of liver regeneration, implying that p15 and p21 could be exploited for the identification of specific targets for the treatment of liver disease. Provided here for the first time is the RNA-Seq data that represents the fully annotated catalogue of the expression of mRNAs. The most prominent alterations observed were the changes in BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. These new findings expand previous and related knowledge in the search for gene changes that might be critical in the understanding of the underlying progression to the development of AH.


Assuntos
Proteína BRCA1/metabolismo , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Corpos de Mallory/patologia , Animais , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Perfilação da Expressão Gênica , Hepatite Alcoólica/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Corpos de Mallory/metabolismo , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Transcriptoma
8.
Exp Mol Pathol ; 99(3): 552-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403328

RESUMO

MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.


Assuntos
Hepatite Alcoólica/patologia , Corpos de Mallory/patologia , MicroRNAs/biossíntese , Animais , Modelos Animais de Doenças , Hepatite Alcoólica/genética , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
9.
Exp Mol Pathol ; 99(3): 506-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407761

RESUMO

FAT10 belongs to the ubiquitin-like modifier (ULM) family that targets proteins for degradation and is recognized by 26S proteasome. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by IFNγ and TNFα in the non-immune (liver parenchymal) cells. It is not clear how viral proteins and alcohol regulate FAT10 expression on liver cells. In this study, we aimed to investigate whether FAT10 expression on liver cells is activated by the innate immunity factor, IFNα and how HCV protein expression in hepatocytes and ethanol-induced oxidative stress affect the level of FAT10 in liver cells. For this study, we used HCV(+) transgenic mice that express structural HCV proteins and their HCV(-) littermates. Mice were fed Lieber De Carli diet (control and ethanol) as specified in the NIH protocol for chronic-acute ethanol feeding. Alcohol exposure enhanced steatosis, induced oxidative stress and decreased proteasome activity in the liversof these mice, with more robust response to ethanol in HCV(+) mice. IFNα induced transcriptional activation of FAT10 in liver cells, which was dysregulated by ethanol feeding. Accordingly, IFNα-activated expression of FAT10 in hepatocytes (measured by indirect immunofluorescent of liver tissue) was also suppressed by ethanol exposure in both HCV(+) and HCV(-) mice. This suppression was accompanied with ethanol-mediated induction of lipid peroxidation marker, 4-HNE. All aforementioned effects of ethanol were attenuated by in vivo feeding of mice with the pro-methylating agent, betaine, which exhibits strong anti-oxidant properties. Based on this study, we hypothesize that FAT10 targets oxidatively modified proteins for proteasomal degradation, and that the reduction in FAT10 levels along with decreased proteasome activity may contribute to stabilization of these altered proteins in hepatocytes. In conclusion, IFNα induced FAT10 expression, which is suppressed by ethanol feeding in both HCV(+) and HCV(-) mice. Betaine treatment reverses HCV-ethanol induced dysregulation of protein methylation and oxidative stress, thereby restoring the FAT10 expression on liver cells.


Assuntos
Etanol/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ubiquitinas/metabolismo , Animais , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo
10.
Exp Mol Pathol ; 99(2): 326-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260903

RESUMO

Epigenetic regulation of gene expression has been suggested to play a critical role in the development of alcoholic hepatitis (AH). Although it has been shown that ethanol-induced damage in hepatocytes resulted from a change in methionine metabolism causes global gene expression changes in hepatocytes, the role of the epigenetic machinery in such processes has, however, been barely investigated. 5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are major molecules of epigenetic DNA modification that play an important role in the control of gene expression. Using antibodies against 5mC and 5hmC, the DNA methylation in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of 5mC in patients with AH was significantly higher than that seen in normal controls. While there was a trend of decreased 5-hmC in patients with AH, the difference between patients with AH and normal control was not significant. Our study suggests that aberrant DNA-methylation is associated with pathogenesis of AH.


Assuntos
5-Metilcitosina/metabolismo , Biomarcadores/metabolismo , Citosina/análogos & derivados , Metilação de DNA , Epigênese Genética/genética , Hepatite Alcoólica/genética , Fígado/metabolismo , Citosina/metabolismo , Regulação da Expressão Gênica , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Hepatócitos , Humanos , Técnicas Imunoenzimáticas , Fígado/citologia
11.
Exp Mol Pathol ; 99(2): 320-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260904

RESUMO

Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH.


Assuntos
Hepatite Alcoólica/metabolismo , Hepatócitos/metabolismo , Interleucina-8/metabolismo , Fígado/metabolismo , Corpos de Mallory/metabolismo , Piridinas/toxicidade , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Hepatite Alcoólica/etiologia , Hepatite Alcoólica/patologia , Hepatócitos/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas Imunoenzimáticas , Interleucina-8/genética , Fígado/citologia , Masculino , Corpos de Mallory/patologia , Camundongos , Camundongos Endogâmicos C3H , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Exp Mol Pathol ; 98(1): 65-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25526666

RESUMO

Efficient management of misfolded or aggregated proteins in ASH and NASH is crucial for continued hepatic viability. Cellular protein quality control systems play an important role in the pathogenesis and progression of ASH and NASH. In a recent study, elevated Mca1 expression counteracted aggregation and accumulation of misfolded proteins and extended the life span of the yeast Saccharomyces cerevisiae (Hill et al, 2014). Mca1 may also associate with Ssa1 and Hsp104 in disaggregation and fragmentation of aggregated proteins and their subsequent degradation through the ER-associated degradation (ERAD) pathway. If degradation is not available, protection of the cellular environment from a misfolded protein is accomplished by its sequestration into two distinct inclusion bodies (Kaganovich et al., 2008) called the JUNQ (JUxta Nuclear Quality control compartment) and the IPOD (Insoluble Protein Deposit). Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 all play important roles in protein quality control systems. This study aims to measure the expression of Mca1 and related chaperones involved in protein quality control in alcoholic steatohepatitis (ASH), and nonalcoholic steatohepatitis (NASH) compared with normal control liver biopsies. Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 expressions were measured in three to six formalin-fixed paraffin embedded ASH and NASH liver biopsies and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. Mca1, Hsp104, Ydj1 and p62 were significantly upregulated compared to control (p<0.05) in ASH specimens. Hsp40 and VCP/p97 were also uptrending in ASH. In NASH, the only significant difference was the increased expression of Hsp104 compared to control (p<0.05). Ssa1 levels were uptrending in both ASH and NASH specimens. The upregulation of Mca1, Hsp104, Ydj1 and p62 in ASH may be elicited as a response to the chronic exposure of the hepatocytes to the toxicity of alcohol. Recruitment of Mca1, Hsp104, Ydj1 and p62 may indicate that autophagy, the ERAD, JUNQ, and IPOD systems are active in ASH. Whereas in NASH, elevated Hsp104 and uptrending Ssa1 levels may indicate that autophagy and IPOD may be the only active protein quality control systems involved.


Assuntos
Biomarcadores/metabolismo , Caspases/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Regulação da Expressão Gênica , Chaperonas Moleculares/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Autofagia , Degradação Associada com o Retículo Endoplasmático , Fígado Gorduroso Alcoólico/patologia , Imunofluorescência , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Dobramento de Proteína , Proteólise
13.
Exp Mol Pathol ; 97(3): 477-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25290169

RESUMO

Promoter CpG island hypermethylation is an important mechanism for inactivating key cellular enzymes that mediate epigenetic processes in hepatitis-related hepatocellular carcinoma (HCC). The ubiquitin-fold modifier 1 (Ufm1) conjugation pathway (Ufmylation) plays an essential role in protein degradation, protein quality control and signal transduction. Previous studies showed that the Ufmylation pathway was downregulated in alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and in mice fed DDC, resulting in the formation of Mallory-Denk Bodies (MDBs). In this study, we further discovered that betaine, a methyl donor, fed together with DDC significantly prevents the increased expression of Ufmylation in drug-primed mice fed DDC. Betaine significantly prevented transcript silencing of Ufm1, Uba5 and UfSP1 where MDBs developed and also prevented the increased expression of FAT10 and LMP7 caused by DDC re-fed mice. Similar downregulation of Ufmylation was observed in multiple AH and NASH biopsies which had formed MDBs. The DNA methylation levels of Ufm1, Ufc1 and UfSP1 in the promoter CpG region were significantly increased both in AH and NASH patients compared to normal subjects. DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) mRNA levels were markedly upregulated in AH and NASH patients, implying that the maintenance of Ufmylation methylation might be mediated by DNMT1 and DNMT3B together. These data show that MDB formation results from Ufmylation expression epigenetically in AH and NASH patients. Promoter CpG methylation may be a major mechanism silencing Ufmylation expression.


Assuntos
Epigênese Genética/genética , Hepatite Alcoólica/metabolismo , Corpos de Mallory/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Betaína/farmacologia , Western Blotting , Metilação de DNA/genética , Modelos Animais de Doenças , Hepatite Alcoólica/genética , Hepatite Alcoólica/patologia , Humanos , Masculino , Corpos de Mallory/genética , Corpos de Mallory/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
14.
Exp Mol Pathol ; 97(3): 492-510, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25217800

RESUMO

This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos
15.
Exp Mol Pathol ; 97(3): 338-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25217811

RESUMO

Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/efeitos dos fármacos , Hepatite Alcoólica/imunologia , Inflamação/complicações , Etanol/efeitos adversos , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Humanos , Imuno-Histoquímica , Inflamação/induzido quimicamente , Corpos de Mallory/imunologia , Corpos de Mallory/metabolismo , Corpos de Mallory/patologia , Reação em Cadeia da Polimerase em Tempo Real
16.
Exp Mol Pathol ; 97(2): 305-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149528

RESUMO

Recent studies indicate that the inflammasome activation plays important roles in the pathogenesis of alcoholic hepatitis (AH). Nod-like receptor protein 3 (NLRP3) is a key component of the macromolecular complex that is so called the inflammasome that triggers caspase 1-dependent maturation of the precursors of IL-1ß and IL-18 cytokines. It is also known that the adaptor proteins including apoptosis-associated speck-like protein containing CARD (ASC) and the mitochondrial antiviral signaling protein (MAVS) are necessary for NLRP3-dependent inflammasome function. Steatohepatitis frequently includes Mallory-Denk body (MDB) formation. In the case of alcoholic steatohepatitis, MDB formation occurs in 80% of biopsies (French 1981; French 1981). While previous studies have focused on in vitro cell lines and mouse models, we are the first group to investigate inflammasome activation in AH liver biopsy specimen and correlate it with MDB formation. Expression of NOD1, NLRP3, ASC, NAIP, MAVS, caspase 1, IL-1ß, IL-18, and other inflammatory components including IL-6, IL-10, TNF-α, IFN-γ, STAT3, and p65 was measured in three to eight formalin-fixed paraffin-embedded AH specimens and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. The specimens were double stained with ubiquitin to demonstrate the relationship between inflammasome activation and MDB formation. MAVS, caspase1, IL-18, and TNF-α showed increases in expression in AH compared to the controls (p<0.05), and NAIP expression markedly increased in AH compared to the controls (p<0.01). There was a trend that levels of NLRP3, ASC, caspase1, IL-18, IL-10, and p65 expression correlated with the number of MDBs found in the same field of measurement (correlation coefficients were between 0.62 and 0.93, p<0.05). Our results demonstrate the activation of the inflammasome in AH and suggest that MDB could be an indicator of the extent of inflammasome activation.


Assuntos
Hepatite Alcoólica/metabolismo , Inflamassomos/metabolismo , Corpos de Mallory/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Caspase 1/genética , Caspase 1/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Hepatite Alcoólica/patologia , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Corpos de Mallory/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Inibidora de Apoptose Neuronal/genética , Proteína Inibidora de Apoptose Neuronal/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
17.
Exp Mol Pathol ; 97(2): 234-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997224

RESUMO

Activation of Toll-like receptor (TLR) signaling which stimulates inflammatory and proliferative pathways is the key element in the pathogenesis of Mallory-Denk bodies (MDBs) in mice fed DDC. However, little is known as to how TLR signaling is regulated in MDB formation during chronic liver disease development. The first systematic study of TLR signaling pathway transcript regulation in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies with MDB formation is presented here. When compared to the activation of Toll-like signaling in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH) patients, striking similarities and obvious differences were observed. Similar TLRs (TLR3 and TLR4, etc.), TLR downstream adaptors (MyD88 and TRIF, etc.) and transcript factors (NFκB and IRF7, etc.) were all upregulated in the patients' livers. MyD88, TLR3 and TLR4 were significantly induced in the livers of AH and NASH compared to normal subjects, while TRIF and IRF7 mRNA were only slightly upregulated in AH patients. This is a different pathway from the induction of the TLR4-MyD88-independent pathway in the AH and NASH patients with MDBs present. Importantly, chemokine receptor 4 and 7 (CXCR4/7) mRNAs were found to be induced in the patients livers in FAT10 positive hepatocytes. The CXCR7 pathway was significantly upregulated in patients with AH and the CXCR4 was markedly upregulated in patients with NASH, indicating that CXCR4/7 is crucial in liver MDB formation. This data constitutes the first demonstration of the upregulation of the MyD88-dependent TLR4/NFκB pathway in AH and NASH where MDBs formed, via the NFκB-CXCR4/7 pathway, and provides further insight into the mechanism of MDB formation in human liver diseases.


Assuntos
Fígado Gorduroso/metabolismo , Hepatite Alcoólica/metabolismo , Corpos de Mallory/patologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Estudos de Casos e Controles , Fígado Gorduroso/patologia , Hepatite Alcoólica/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Corpos de Mallory/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética , Regulação para Cima
18.
Alcohol Clin Exp Res ; 38(6): 1540-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24730561

RESUMO

BACKGROUND: Alcoholic steatohepatitis (ASH) is caused in part by the effects of ethanol (EtOH) on hepatic methionine metabolism. METHODS: To investigate the phenotypic and epigenetic consequences of altered methionine metabolism in this disease, we studied the effects of 4-week intragastric EtOH feeding with and without the methyl donor betaine in cystathionine beta synthase (CßS) heterozygous C57BL/6J mice. RESULTS: The histopathology of early ASH was induced by EtOH feeding and prevented by betaine supplementation, while EtOH feeding reduced and betaine supplementation maintained the hepatic methylation ratio of the universal methyl donor S-adenosylmethionine (SAM) to the methyltransferase inhibitor S-adenosylhomocysteine (SAH). MethylC-seq genomic sequencing of heterozygous liver samples from each diet group found 2 to 4% reduced methylation in gene bodies, but not promoter regions of all autosomes of EtOH-fed mice, each of which were normalized in samples from mice fed the betaine-supplemented diet. The transcript levels of nitric oxide synthase (Nos2) and DNA methyltransferase 1 (Dnmt1) were increased, while those of peroxisome proliferator receptor-α (Pparα) were reduced in EtOH-fed mice, and each was normalized in mice fed the betaine-supplemented diet. DNA pyrosequencing of CßS heterozygous samples found reduced methylation in a gene body of Nos2 by EtOH feeding that was restored by betaine supplementation and was correlated inversely with its expression and positively with SAM/SAH ratios. CONCLUSIONS: The present study has demonstrated relationships among EtOH induction of ASH with aberrant methionine metabolism that was associated with gene body DNA hypomethylation in all autosomes and was prevented by betaine supplementation. The data imply that EtOH-induced changes in selected gene transcript levels and hypomethylation in gene bodies during the induction of ASH are a result of altered methionine metabolism that can be reversed through dietary supplementation of methyl donors.


Assuntos
Betaína/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Etanol/farmacologia , Fígado Gorduroso Alcoólico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homocistinúria/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/análise , Suplementos Nutricionais , Fígado/química , Fígado/efeitos dos fármacos , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise , PPAR alfa/análise , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
19.
Epigenetics ; 9(2): 286-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220304

RESUMO

Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Colina/metabolismo , Cobre/metabolismo , Metilação de DNA , Feto/metabolismo , Degeneração Hepatolenticular/metabolismo , Fígado/metabolismo , Troca Materno-Fetal , Animais , Colina/administração & dosagem , Ciclina D1/metabolismo , Dieta , Feminino , Expressão Gênica , Degeneração Hepatolenticular/patologia , Degeneração Hepatolenticular/fisiopatologia , Metabolismo dos Lipídeos , Fígado/patologia , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Gravidez
20.
Exp Mol Pathol ; 90(3): 295-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21352821

RESUMO

There is a need for a nontoxic antioxidant agent to be identified which will prevent alcoholic liver disease (ALD) in alcoholic patients. We tested 4 candidate agents: quercetin, EGCG, catechin and betaine, all of which occur naturally in food. HepG2 cells overexpressing CYP2E1 were subjected to arachidonic acid, iron and 100mM ethanol with or without the antioxidant agent. All the agents prevented oxidative stress and MDA/4HNE formation induced by ethanol, except for EGCG. Catechin prevented CYP2E1 induction by ethanol. All the agents tended to down-regulate the ethanol-induced increased expression of glutathionine peroxidase 4 (GPX4). All the agents, except catechin, tended to reduce the expression of SOD2 induced by ethanol. Heat shock protein 70 was up-regulated by ethanol alone and betaine tended to prevent this. All 4 agents down-regulated the expression of Gadd45b in the presence of ethanol, which could explain the mechanism of DNA demethylation associated with the up-regulation of the gene expression observed in experimental ALD. In conclusion, the in vitro model of oxidative stress induced by ethanol provided evidence that all 4 agents tested prevented some aspect of liver cell injury caused by ethanol.


Assuntos
Betaína/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Etanol/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Aldeídos/metabolismo , Anti-Infecciosos Locais/efeitos adversos , Antioxidantes/farmacologia , Western Blotting , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fármacos Gastrointestinais/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Malondialdeído/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...