Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(18): 12607-12628, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114325

RESUMO

This manuscript provides an overview of the current state of the art in terms of the molecular modelling of the thermophysical properties of fluids. It is intended to manage the expectations and serve as guidance to practising physical chemists, chemical physicists and engineers in terms of the scope and accuracy of the more commonly available intermolecular potentials along with the peculiarities of the software and methods employed in molecular simulations while providing insights on the gaps and opportunities available in this field. The discussion is focused around case studies which showcase both the precision and the limitations of frequently used workflows.

2.
J Phys Chem C Nanomater Interfaces ; 120(14): 7586-7590, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27110318

RESUMO

The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

3.
Bone Rep ; 5: 22-32, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28326344

RESUMO

The first osteogenic cells to attach to a titanium (Ti) implant after placement are the multipotent stromal cells (MSCs) that circulate in the bloodstream and are recruited to the site of tissue damage. The reservoirs of these cells are heterogeneous in nature, consisting of a mixture of cells with varying differentiation abilities. In order to utilise these cells and to reduce the chance of unwanted events during regenerative therapies, the selection of a subset of cells that is truly multipotent is required. The behaviour of these cells has been shown to be altered by modifications to Ti implant surfaces, most notably rough, hydrophilic Ti. These changes in behaviour underpin the differences seen in clinical performance of these surfaces. In this study Human bone marrow derived stromal cells (hBMSCs) have been cultured on modified Ti surfaces in order to analyse these changes in cell behaviour. The results demonstrate the different effects of the surfaces and suggest that one surface selectively enriches the population with osteogenic adult 'stem cells' by inducing the cell death of the more differentiated cells. Combined with subsequent expansion in bioreactors before implantation, this may lead to a new source of cells for regenerative therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...