Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145091

RESUMO

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Assuntos
Autofagia/genética , Defeitos Congênitos da Glicosilação/genética , Hepatopatias/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Biópsia , Células Cultivadas , Defeitos Congênitos da Glicosilação/sangue , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Análise Mutacional de DNA , Fibroblastos , Humanos , Fígado/citologia , Fígado/patologia , Hepatopatias/sangue , Hepatopatias/diagnóstico , Hepatopatias/patologia , Masculino , Mutação de Sentido Incorreto , Linhagem , Cultura Primária de Células
2.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283131

RESUMO

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Assuntos
Cardiomiopatias/enzimologia , Cardiomiopatias/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação/genética , Transferases de Grupos Nitrogenados/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocárdio/patologia , Miocárdio/ultraestrutura , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Fosforilação Oxidativa , Linhagem , Biossíntese de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Hum Mol Genet ; 27(17): 3029-3045, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878199

RESUMO

Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.


Assuntos
Doenças do Desenvolvimento Ósseo/etiologia , Calcificação Fisiológica , Defeitos Congênitos da Glicosilação/complicações , Genômica , Glicômica , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Simportadores/genética , Adulto , Animais , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Estudos de Coortes , Exoma , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Linhagem , Fenótipo , Transporte Proteico , Simportadores/metabolismo , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
4.
Hum Mutat ; 38(12): 1786-1795, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28905505

RESUMO

Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl-tRNA synthases. Eukaryotic cells contain 17 mitochondria-specific aminoacyl-tRNA synthases. WARS2 encodes mitochondrial tryptophanyl-tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan-tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Variação Genética , Deficiência Intelectual/genética , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Exoma/genética , Feminino , Humanos , Recém-Nascido , Deficiência Intelectual/enzimologia , Masculino , Doenças Mitocondriais/enzimologia , Encefalomiopatias Mitocondriais/enzimologia , Encefalomiopatias Mitocondriais/patologia , Modelos Moleculares , Mutação , Linhagem , Fenótipo , Gravidez , Alinhamento de Sequência , Sequenciamento do Exoma
5.
Mol Genet Metab ; 120(3): 243-246, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986404

RESUMO

NDUFAF3 is an assembly factor of mitochondrial respiratory chain complex I. Variants in NDUFAF3 have been identified as a cause of severe multisystem mitochondrial disease. In a patient presenting with Leigh syndrome, which has hitherto not been described as a clinical feature of NDUFAF3 deficiency, we identified a novel homozygous variant and confirmed its pathogenicity in patient fibroblasts studies. Furthermore, we present an analysis of complex I assembly routes representative of each functional module and, thereby, link NDUFAF3 to a specific step in complex I assembly. Therefore, our report expands the phenotype of NDUFAF3 deficiency and further characterizes the role of NDUFAF3 in complex I biogenesis.


Assuntos
Doença de Leigh/genética , Proteínas Mitocondriais/genética , Mutação , Análise de Sequência de DNA/métodos , Células Cultivadas , Exoma , Evolução Fatal , Feminino , Fibroblastos/citologia , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Doença de Leigh/patologia , Fenótipo
6.
Nat Commun ; 7: 11600, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27231034

RESUMO

The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.


Assuntos
Disfunção Cognitiva/genética , Síndromes de Imunodeficiência/genética , Hepatopatias/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Disfunção Cognitiva/metabolismo , Saúde da Família , Glicosilação , Humanos , Síndromes de Imunodeficiência/metabolismo , Lactente , Hepatopatias/metabolismo , Masculino , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/deficiência , Adulto Jovem
7.
Am J Hum Genet ; 98(2): 322-30, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833330

RESUMO

Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.


Assuntos
Fosfatase Alcalina/metabolismo , Colesterol/metabolismo , Complexo de Golgi/genética , Homeostase , Proteínas de Membrana/deficiência , Transaminases/metabolismo , Adulto , Sequência de Aminoácidos , Ceruloplasmina/metabolismo , Retículo Endoplasmático/metabolismo , Exoma , Fibroblastos/metabolismo , Genótipo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Adulto Jovem
8.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833332

RESUMO

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Assuntos
Complexo de Golgi/genética , Homeostase , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Fibroblastos/citologia , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Heterozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499211

RESUMO

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Assuntos
Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Fenótipo , Fosfoglucomutase/genética , Galactose/uso terapêutico , Genes Recessivos , Glucose/metabolismo , Glucofosfatos/metabolismo , Doença de Depósito de Glicogênio/dietoterapia , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/biossíntese , Glicosilação , Humanos , Masculino , Mutação , Fosfoglucomutase/metabolismo , RNA Mensageiro/análise
10.
Brain ; 137(Pt 4): 1030-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24566669

RESUMO

Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N-glycans, in agreement with deficient mannosidase activity. The speed and robustness of the method allowed subsequent screening in a cohort of 100 patients with congenital disorder of glycosylation type II, which revealed the characteristic glycosylation profile of MAN1B1-congenital disorder of glycosylation in 11 additional patients. Abnormal hybrid type N-glycans were also observed in the glycoprofiles of total serum proteins, of enriched immunoglobulins and of alpha1-antitrypsin in variable amounts. Sanger sequencing revealed MAN1B1 mutations in all patients, including severe truncating mutations and amino acid substitutions in the alpha-mannosidase catalytic site. Clinically, this group of patients was characterized by intellectual disability and delayed motor and speech development. In addition, variable dysmorphic features were noted, with truncal obesity and macrocephaly in ∼65% of patients. In summary, MAN1B1 deficiency appeared to be a frequent cause in our cohort of patients with unsolved congenital disorder of glycosylation type II. Our method for analysis of intact transferrin provides a rapid test to detect MAN1B1-deficient patients within congenital disorder of glycosylation type II cohorts and can be used as efficient diagnostic method to identify MAN1B1-deficient patients in intellectual disability cohorts. In addition, it provides a functional confirmation of MAN1B1 mutations as identified by next-generation sequencing in individuals with intellectual disability.


Assuntos
Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Adolescente , Adulto , Pré-Escolar , Análise Mutacional de DNA/métodos , Proteínas de Ligação a DNA , Feminino , Glicosilação , Humanos , Lactente , Deficiência Intelectual/sangue , Masculino , Proteínas de Membrana/sangue , Mutação , Proteínas Nucleares/sangue , Adulto Jovem
11.
Hum Mol Genet ; 21(19): 4151-61, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492991

RESUMO

Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Exoma , Genoma Humano , Análise de Sequência de DNA , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Proteínas/genética , Proteínas/metabolismo , Adulto Jovem
12.
Mol Genet Metab ; 90(1): 10-4, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16996290

RESUMO

We describe a novel mitochondrial ND2 mutation (T4681C) in a patient presenting with Leigh Syndrome. Biochemical analyses revealed a low isolated complex I activity in patient's fibroblasts, blood and skeletal muscle. Mutant transmitochondrial cybrid clones retained the specific complex I defect, demonstrating the mitochondrial genetic origin of the disease. The mutation leads to a L71P substitution at an evolutionary conserved amino acid stretch. By two-dimensional blue native electrophoresis (2D-BN-SDS-PAGE), decreased complex I levels were observed together with an accumulation of specific assembly intermediates, suggesting that the mutation disturbs the complex I assembly pathway.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/enzimologia , Doença de Leigh/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , NADH Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Células Cultivadas , Criança , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Lactente , Doença de Leigh/etiologia , Masculino , Proteínas Mitocondriais/fisiologia , Dados de Sequência Molecular , NADH Desidrogenase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...