Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295407

RESUMO

In this study, ceramic materials of Mg(Ti0.99Sn0.01)O3were synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(Ti0.99Sn0.01)O3(rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from scanning electron microscopy (SEM) analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on the rGO's surface. The electrochemical performance of rGO/MTS001 and MTS001 was investigated by determining the specific capacitance obtained in 1 M H2SO4solution by cyclic voltammetry, followed by galvanostatic charge-discharge analysis using a three-electrode setup. The rGO/MTS001 achieved a specific capacitance of 361.97 F g‒1, compared to MTS001 (194.90 F g‒1). The capacitance retention of rGO/MTS001 nanocomposite also depicted excellent cyclic stability of 95.72% after 5000 cycles at a current density of 0.1 A g‒1. The result showed that the nanocomposite of ceramics with graphene materials has a potential for high-performance supercapacitor electrodes.

2.
Adv Mater ; 35(38): e2210683, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36857683

RESUMO

Semiconducting colloidal quantum dots (CQDs) represent an emerging class of thermoelectric materials for use in a wide range of future applications. CQDs combine solution processability at low temperatures with the potential for upscalable manufacturing via printing techniques. Moreover, due to their low dimensionality, CQDs exhibit quantum confinement and a high density of grain boundaries, which can be independently exploited to tune the Seebeck coefficient and thermal conductivity, respectively. This unique combination of attractive attributes makes CQDs very promising for application in emerging thermoelectric generator (TEG) technologies operating near room temperature. Herein, recent progress in CQDs for application in emerging thin-film thermoelectrics is reviewed. First, the fundamental concepts of thermoelectricity in nanostructured materials are outlined, followed by an overview of the popular synthetic methods used to produce CQDs with controllable sizes and shapes. Recent strides in CQD-based thermoelectrics are then discussed with emphasis on their application in thin-film TEGs. Finally, the current challenges and future perspectives for further enhancing the performance of CQD-based thermoelectric materials for future applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...