Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755132

RESUMO

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Análise de Célula Única , Tuberculose , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise de Célula Única/métodos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Microfluídica/métodos , Fenótipo , Descoberta de Drogas/métodos , Sinergismo Farmacológico
2.
J Microsc ; 294(3): 276-294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656474

RESUMO

Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.


Assuntos
Disciplinas das Ciências Biológicas , Disciplinas das Ciências Biológicas/métodos
4.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240380

RESUMO

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Assuntos
Músculo Esquelético , Músculos Oculomotores , Camundongos , Animais , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Células-Tronco
5.
Dev Cell ; 58(22): 2477-2494.e8, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875118

RESUMO

Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.


Assuntos
Proteínas do Citoesqueleto , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
6.
Sci Adv ; 9(35): eadg7519, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656795

RESUMO

The maintenance of neural stem cells (NSCs) in the adult brain depends on their activation frequency and division mode. Using long-term intravital imaging of NSCs in the zebrafish adult telencephalon, we reveal that apical surface area and expression of the Notch ligand DeltaA predict these NSC decisions. deltaA-negative NSCs constitute a bona fide self-renewing NSC pool and systematically engage in asymmetric divisions generating a self-renewing deltaAneg daughter, which regains the size and behavior of its mother, and a neurogenic deltaApos daughter, eventually engaged in neuronal production following further quiescence-division phases. Pharmacological and genetic manipulations of Notch, DeltaA, and apical size further show that the prediction of activation frequency by apical size and the asymmetric divisions of deltaAneg NSCs are functionally independent of Notch. These results provide dynamic qualitative and quantitative readouts of NSC lineage progression in vivo and support a hierarchical organization of NSCs in differently fated subpopulations.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Neurônios/fisiologia , Divisão Celular , Neurogênese
7.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408252

RESUMO

The Neurovascular Unit (NVU), composed of glia (astrocytes, oligodendrocytes, microglia), neurons, pericytes and endothelial cells, is a dynamic interface ensuring the physiological functioning of the central nervous system (CNS), which gets affected and contributes to the pathology of several neurodegenerative diseases. Neuroinflammation is a common feature of neurodegenerative diseases and is primarily related to the activation state of perivascular microglia and astrocytes, which constitute two of its major cellular components. Our studies focus on monitoring in real time the morphological changes of perivascular astrocytes and microglia, as well as their dynamic interactions with the brain vasculature, under physiological conditions and following systemic neuroinflammation triggering both microgliosis and astrogliosis. To this end, we performed 2-photon laser scanning microscopy (2P-LSM) for intravital imaging of the cortex of transgenic mice visualizing the dynamics of microglia and astroglia following neuroinflammation induced by systemic administration of the endotoxin lipopolysaccharide (LPS). Our results indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, an event that most possibly contributes to a loss of blood-brain barrier (BBB) integrity. At the same time, microglial cells become activated and exhibit a higher extent of physical contact with the blood vessels. These dynamic responses of perivascular astrocytes and microglia are peaking at 4 days following LPS administration; however, they still persist at a lower level at 8 days after LPS injection, revealing incomplete reversal of inflammation affecting the glial properties and interactions within the NVU.


Assuntos
Astrócitos , Microglia , Animais , Camundongos , Astrócitos/patologia , Microglia/patologia , Lipopolissacarídeos/efeitos adversos , Doenças Neuroinflamatórias , Células Endoteliais/patologia , Encéfalo/patologia , Inflamação/patologia , Camundongos Transgênicos
8.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880553

RESUMO

Single-particle tracking microscopy is a powerful technique to investigate how proteins dynamically interact with their environment in live cells. However, the analysis of tracks is confounded by noisy molecule localization, short tracks, and rapid transitions between different motion states, notably between immobile and diffusive states. Here, we propose a probabilistic method termed ExTrack that uses the full spatio-temporal information of tracks to extract global model parameters, to calculate state probabilities at every time point, to reveal distributions of state durations, and to refine the positions of bound molecules. ExTrack works for a wide range of diffusion coefficients and transition rates, even if experimental data deviate from model assumptions. We demonstrate its capacity by applying it to slowly diffusing and rapidly transitioning bacterial envelope proteins. ExTrack greatly increases the regime of computationally analyzable noisy single-particle tracks. The ExTrack package is available in ImageJ and Python.


Assuntos
Proteínas de Bactérias , Microscopia , Difusão , Cinética
9.
J Mol Cell Biol ; 14(11)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36314049

RESUMO

HIV integration occurs in chromatin sites that favor the release of high levels of viral progeny; alternatively, the virus is also able to discreetly coexist with the host. The viral infection perturbs the cellular environment inducing the remodelling of the nuclear landscape. Indeed, HIV-1 triggers the nuclear clustering of the host factor CPSF6, but the underlying mechanism is poorly understood. Our data indicate that HIV usurps a recently discovered biological phenomenon, called liquid-liquid phase separation, to hijack the host cell. We observed CPSF6 clusters as part of HIV-induced membraneless organelles (HIV-1 MLOs) in macrophages, one of the main HIV target cell types. We describe that HIV-1 MLOs follow phase-separation rules and represent functional biomolecular condensates. We highlight HIV-1 MLOs as hubs of nuclear reverse transcription, while the double-stranded viral DNA, once formed, rapidly migrates outside these structures. Transcription-competent proviruses localize outside but near HIV-1 MLOs in LEDGF-abundant regions, known to be active chromatin sites. Therefore, HIV-1 MLOs orchestrate viral events prior to the integration step and create a favorable environment for the viral replication. This study uncovers single functional host-viral complexes in their nuclear landscape, which is markedly restructured by HIV-1.


Assuntos
Condensados Biomoleculares , Infecções por HIV , Humanos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Replicação Viral
10.
BMC Biol ; 20(1): 183, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999534

RESUMO

BACKGROUND: Efficient tools allowing the extraction of 2D surfaces from 3D-microscopy data are essential for studies aiming to decipher the complex cellular choreography through which epithelium morphogenesis takes place during development. Most existing methods allow for the extraction of a single and smooth manifold of sufficiently high signal intensity and contrast, and usually fail when the surface of interest has a rough topography or when its localization is hampered by other surrounding structures of higher contrast. Multiple surface segmentation entails laborious manual annotations of the various surfaces separately. RESULTS: As automating this task is critical in studies involving tissue-tissue or tissue-matrix interaction, we developed the Zellige software, which allows the extraction of a non-prescribed number of surfaces of varying inclination, contrast, and texture from a 3D image. The tool requires the adjustment of a small set of control parameters, for which we provide an intuitive interface implemented as a Fiji plugin. CONCLUSIONS: As a proof of principle of the versatility of Zellige, we demonstrate its performance and robustness on synthetic images and on four different types of biological samples, covering a wide range of biological contexts.


Assuntos
Algoritmos , Microscopia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Software
11.
Nat Methods ; 19(7): 829-832, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654950

RESUMO

TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.


Assuntos
Algoritmos , Software , Processamento de Imagem Assistida por Computador/métodos
12.
J Clin Med ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456169

RESUMO

The scalar position of the electrode array is assumed to be associated with auditory performance after cochlear implantation. We propose a new method that can be routinely applied in clinical practice to assess the position of an electrode array. Ten basilar membrane templates were generated using micro-computed tomography (micro-CT), based on the dimensions of 100 cochleae. Five surgeons were blinded to determine the position of the electrode array in 30 cadaveric cochleae. The procedure consisted of selecting the appropriate template based on cochlear dimensions, merging the electrode array reconstruction with the template using four landmarks, determining the position of the array according to the template position, and comparing the results obtained to histology data. The time taken to analyze each implanted cochlea was approximately 12 min. We found that, according to histology, surgeons were in almost perfect agreement when determining an electrode translocated to the scala vestibuli with the perimodiolar MidScala array (Fleiss' kappa (κ) = 0.82), and in moderate agreement when using the lateral wall EVO array (κ = 0.42). Our data indicate that an adapted basilar membrane template can be used as a rapid and reproducible method to assess the position of the electrode array after cochlear implantation.

13.
Sci Adv ; 8(8): eabm2696, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213220

RESUMO

Intermediate filaments (IFs) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49-nanometer axial repeat both in cells and in vitro. As unit-length filaments (ULFs) were measured at ~59 nanometers, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical, and structural properties in cells.

14.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599102

RESUMO

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Assuntos
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo
15.
BMC Biol ; 19(1): 136, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215263

RESUMO

BACKGROUND: Quantitative imaging of epithelial tissues requires bioimage analysis tools that are widely applicable and accurate. In the case of imaging 3D tissues, a common preprocessing step consists of projecting the acquired 3D volume on a 2D plane mapping the tissue surface. While segmenting the tissue cells is amenable on 2D projections, it is still very difficult and cumbersome in 3D. However, for many specimen and models used in developmental and cell biology, the complex content of the image volume surrounding the epithelium in a tissue often reduces the visibility of the biological object in the projection, compromising its subsequent analysis. In addition, the projection may distort the geometry of the tissue and can lead to strong artifacts in the morphology measurement. RESULTS: Here we introduce a user-friendly toolbox built to robustly project epithelia on their 2D surface from 3D volumes and to produce accurate morphology measurement corrected for the projection distortion, even for very curved tissues. Our toolbox is built upon two components. LocalZProjector is a configurable Fiji plugin that generates 2D projections and height-maps from potentially large 3D stacks (larger than 40 GB per time-point) by only incorporating signal of the planes with local highest variance/mean intensity, despite a possibly complex image content. DeProj is a MATLAB tool that generates correct morphology measurements by combining the height-map output (such as the one offered by LocalZProjector) and the results of a cell segmentation on the 2D projection, hence effectively deprojecting the 2D segmentation in 3D. In this paper, we demonstrate their effectiveness over a wide range of different biological samples. We then compare its performance and accuracy against similar existing tools. CONCLUSIONS: We find that LocalZProjector performs well even in situations where the volume to project also contains unwanted signal in other layers. We show that it can process large images without a pre-processing step. We study the impact of geometrical distortions on morphological measurements induced by the projection. We measured very large distortions which are then corrected by DeProj, providing accurate outputs.


Assuntos
Imageamento Tridimensional , Microscopia
16.
F1000Res ; 10: 334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164115

RESUMO

NEUBIAS, the European Network of Bioimage Analysts, was created in 2016 with the goal of improving the communication and the knowledge transfer among the various stakeholders involved in the acquisition, processing and analysis of biological image data, and to promote the establishment and recognition of the profession of Bioimage Analyst. One of the most successful initiatives of the NEUBIAS programme was its series of 15 training schools, which trained over 400 new Bioimage Analysts, coming from over 40 countries. Here we outline the rationale behind the innovative three-level program of the schools, the curriculum, the trainer recruitment and turnover strategy, the outcomes for the community and the career path of analysts, including some success stories. We discuss the future of the materials created during this programme and some of the new initiatives emanating from the community of NEUBIAS-trained analysts, such as the NEUBIAS Academy. Overall, we elaborate on how this training programme played a key role in collectively leveraging Bioimaging and Life Science research by bringing the latest innovations into structured, frequent and intensive training activities, and on why we believe this should become a model to further develop in Life Sciences.


Assuntos
Disciplinas das Ciências Biológicas , Instituições Acadêmicas , Currículo
17.
Cell Stem Cell ; 28(8): 1457-1472.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823144

RESUMO

Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9-12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Encéfalo , Proliferação de Células , Retroalimentação , Peixe-Zebra
18.
F1000Res ; 9: 1279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224481

RESUMO

The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images.


Assuntos
Rastreamento de Células , Processamento de Imagem Assistida por Computador , Movimento Celular , Fiji , Software
19.
Cell Microbiol ; 22(5): e13166, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31957253

RESUMO

Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F-actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen-presenting cells (APC) is subsequently impaired resulting in decreased cell-cell contacts (or conjugates) between the two cell types, as compared with non-infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.


Assuntos
Citoesqueleto de Actina/metabolismo , Imunidade Adaptativa , Disenteria Bacilar/imunologia , Transporte Proteico/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Shigella/metabolismo , Actinas , Linhagem Celular , Complexo de Golgi , Humanos , Sinapses Imunológicas , Shigella/genética , Linfócitos T/imunologia , Sistemas de Secreção Tipo III/metabolismo
20.
Nat Microbiol ; 4(11): 2001-2009, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31383999

RESUMO

Pathogenic enterobacteria face various oxygen (O2) levels during intestinal colonization from the O2-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we have previously demonstrated that epithelium invasion is promoted by O2 in a type III secretion system-dependent manner. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown. Assessing single-cell distribution, together with tissue oxygenation, we demonstrate here that the colonic mucosa O2 is actively depleted by S. flexneri aerobic respiration-and not host neutrophils-during infection, leading to the formation of hypoxic foci of infection. This process is promoted by type III secretion system inactivation in infected tissues, favouring colonizers over explorers. We identify the molecular mechanisms supporting infectious hypoxia induction, and demonstrate here how enteropathogens optimize their colonization capacity in relation to their ability to manipulate tissue oxygenation during infection.


Assuntos
Disenteria Bacilar/metabolismo , Mucosa Intestinal/microbiologia , Oxigênio/metabolismo , Shigella flexneri/patogenicidade , Animais , Hipóxia Celular , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Feminino , Cobaias , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Coelhos , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...