Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 442(7099): 176-9, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16838016

RESUMO

The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics. Among the different approaches for spin generation and manipulation, spin-orbit coupling--which couples the spin of an electron to its momentum--is attracting considerable interest. In a spin-orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel and in two-dimensional electron gases in semiconductor heterostructures. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.

2.
Phys Rev Lett ; 96(12): 127403, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16605957

RESUMO

Tunable Raman spectroscopy is used to measure the optical transition energies Eii of individual single wall carbon nanotubes. Eii is observed to shift down in energy by as much as 50 meV, from -160 to 300 degrees C, in contrast with previous measurements performed on nanotubes in alternate environments, which show upshifts and downshifts in Eii with temperature. We determine that electron-phonon coupling explains our experimental observations of nanotubes suspended in air, neglecting thermal expansion. In contrast, for nanotubes in surfactant or in bundles, thermal expansion of the nanotubes' environment exerts a nonisotropic pressure on the nanotube that dominates over the effect of electron-phonon coupling.

3.
Nat Nanotechnol ; 1(3): 208-13, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18654188

RESUMO

The controlled growth of nanowires (NWs) with dimensions comparable to the Fermi wavelengths of the charge carriers allows fundamental investigations of quantum confinement phenomena. Here, we present studies of proximity-induced superconductivity in undoped Ge/Si core/shell NW heterostructures contacted by superconducting leads. By using a top gate electrode to modulate the carrier density in the NW, the critical supercurrent can be tuned from zero to greater than 100 nA. Furthermore, discrete sub-bands form in the NW due to confinement in the radial direction, which results in stepwise increases in the critical current as a function of gate voltage. Transport measurements on these superconductor-NW-superconductor devices reveal high-order (n = 25) resonant multiple Andreev reflections, indicating that the NW channel is smooth and the charge transport is highly coherent. The ability to create and control coherent superconducting ordered states in semiconductor-superconductor hybrid nanostructures allows for new opportunities in the study of fundamental low-dimensional superconductivity.


Assuntos
Instalação Elétrica/instrumentação , Germânio/química , Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Semicondutores , Silício/química , Condutividade Elétrica , Desenho de Equipamento
4.
Phys Rev Lett ; 94(19): 196601, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090193

RESUMO

A mesoscopic spin valve is used to determine the dynamic spin polarization of electrons tunneling out of and into ferromagnetic (FM) transition metals at finite voltages. The dynamic polarization of electrons tunneling out of the FM slowly decreases with increasing bias but drops faster and even inverts with voltage when electrons tunnel into it. A free-electron model shows that in the former case electrons originate near the Fermi level of the FM with large polarization whereas in the latter, electrons tunnel into hot electron states for which the polarization is significantly reduced. The change in sign is ascribed to the matching of the electron wave function inside and outside the tunnel barrier.

5.
Phys Rev Lett ; 93(16): 167401, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15525030

RESUMO

Raman spectroscopy is used to measure the strain in individual single-wall carbon nanotubes, strained by manipulation with an atomic-force-microscope tip. Under strains varying from 0.06%-1.65%, the in-plane vibrational mode frequencies are lowered by as much as 1.5% (40 cm(-1)), while the radial breathing mode (RBM) remains unchanged. The RBM Stokes/anti-Stokes intensity ratio remains unchanged under strain. The elasticity of these strain deformations is demonstrated as the down-shifted Raman modes resume their prestrain frequencies after a nanotube is broken under excessive strain.

6.
Phys Rev Lett ; 87(21): 217003, 2001 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-11736371

RESUMO

We have measured the resistance vs temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1 microm. With decreasing cross-sectional areas, the wires display increasingly broad resistive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to T(c) and quantum phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of R(N)/R(q). Our measurements provide strong evidence for QPS in thin superconducting wires.

7.
Nature ; 411(6838): 665-9, 2001 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-11395762

RESUMO

The behaviour of traditional electronic devices can be understood in terms of the classical diffusive motion of electrons. As the size of a device becomes comparable to the electron coherence length, however, quantum interference between electron waves becomes increasingly important, leading to dramatic changes in device properties. This classical-to-quantum transition in device behaviour suggests the possibility for nanometer-sized electronic elements that make use of quantum coherence. Molecular electronic devices are promising candidates for realizing such device elements because the electronic motion in molecules is inherently quantum mechanical and it can be modified by well defined chemistry. Here we describe an example of a coherent molecular electronic device whose behaviour is explicitly dependent on quantum interference between propagating electron waves-a Fabry-Perot electron resonator based on individual single-walled carbon nanotubes with near-perfect ohmic contacts to electrodes. In these devices, the nanotubes act as coherent electron waveguides, with the resonant cavity formed between the two nanotube-electrode interfaces. We use a theoretical model based on the multichannel Landauer-Büttiker formalism to analyse the device characteristics and find that coupling between the two propagating modes of the nanotubes caused by electron scattering at the nanotube-electrode interfaces is important.


Assuntos
Eletrônica , Elétrons , Miniaturização , Modelos Teóricos
8.
Science ; 291(5502): 283-5, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11209073

RESUMO

We report the characterization of defects in individual metallic single-walled carbon nanotubes by transport measurements and scanned gate microscopy. A sizable fraction of metallic nanotubes grown by chemical vapor deposition exhibits strongly gate voltage-dependent resistance at room temperature. Scanned gate measurements reveal that this behavior originates from resonant electron scattering by defects in the nanotube as the Fermi level is varied by the gate voltage. The reflection coefficient at the peak of a scattering resonance was determined to be about 0.5 at room temperature. An intratube quantum dot device formed by two defects is demonstrated by low-temperature transport measurements.


Assuntos
Carbono/química , Elétrons , Condutividade Elétrica , Impedância Elétrica , Microscopia , Semicondutores , Temperatura
9.
Nature ; 404(6781): 971-4, 2000 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-10801120

RESUMO

It is of fundamental importance to establish whether there is a limit to how thin a superconducting wire can be, while retaining its superconducting character--and if there is a limit, to determine what sets it. This issue may also be of practical importance in defining the limit to miniaturization of superconducting electronic circuits. At high temperatures, the resistance of linear superconductors is caused by excitations called thermally activated phase slips. Quantum tunnelling of phase slips is another possible source of resistance that is still being debated. It has been theoretically predicted that such quantum phase slips can destroy superconductivity in very narrow wires. Here we report resistance measurements on ultrathin (< or = 10 nm) nanowires produced by coating carbon nanotubes with a superconducting Mo-Ge alloy. We find that nanowires can be superconducting or insulating depending on the ratio of their normal-state resistance (R(N)) to the quantum resistance for Cooper pairs (Rq). If R(N) < Rq, quantum tunnelling of phase slips is prohibited by strong damping, and so the wires stay superconducting. In contrast, we observe an insulating state for R(N) > Rq, which we explain in terms of proliferation of quantum phase slips and a corresponding localization of Cooper pairs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-11969677

RESUMO

Charge transport in electrorheological fluids is studied experimentally under strongly nonequilibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such a system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.

11.
Phys Rev B Condens Matter ; 53(18): R11949-R11952, 1996 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9982895
15.
17.
20.
Phys Rev Lett ; 74(16): 3241-3244, 1995 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-10058147
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...