Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265764

RESUMO

The COVID-19 pandemic, and the recent rise and widespread transmission of SARS-CoV-2 Variants of Concern (VOCs), have demonstrated the need for ubiquitous nucleic acid testing outside of centralized clinical laboratories. Here, we develop SHINEv2, a Cas13-based nucleic acid diagnostic that combines quick and ambient temperature sample processing and lyophilized reagents to greatly simplify the test procedure and assay distribution. We benchmarked a SHINEv2 assay for SARS-CoV-2 detection against state-of-the-art antigen-capture tests using 96 patient samples, demonstrating 50-fold greater sensitivity and 100% specificity. We designed SHINEv2 assays for discriminating the Alpha, Beta, Gamma and Delta VOCs, which can be read out visually using lateral flow technology. We further demonstrate that our assays can be performed without any equipment in less than 90 minutes. SHINEv2 represents an important advance towards rapid nucleic acid tests that can be performed in any location.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-119131

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINEs results can be visualized with an in-tube fluorescent readout -- reducing contamination risk as amplification reaction tubes remain sealed -- and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-967026

RESUMO

The emergence and outbreak of SARS-CoV-2, the causative agent of COVID-19, has rapidly become a global concern and has highlighted the need for fast, sensitive, and specific tools to surveil circulating viruses. Here we provide assay designs and experimental resources, for use with CRISPR-based nucleic acid detection, that could be valuable for ongoing surveillance. We provide assay designs for detection of 67 viral species and subspecies, including: SARS-CoV-2, phylogenetically-related viruses, and viruses with similar clinical presentation. The designs are outputs of algorithms that we are developing for rapidly designing nucleic acid detection assays that are comprehensive across genomic diversity and predicted to be highly sensitive and specific. Of our design set, we experimentally screened 4 SARS-CoV-2 designs with a CRISPR-Cas13 detection system and then extensively tested the highest-performing SARS-CoV-2 assay. We demonstrate the sensitivity and speed of this assay using synthetic targets with fluorescent and lateral flow detection. Moreover, our provided protocol can be extended for testing the other 66 provided designs. Assay designs are available at https://adapt.sabetilab.org/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...