Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835884

RESUMO

In this study we prepared potassium-ion batteries (KIBs) displaying high output voltage and, in turn, a high energy density, as replacements for lithium-ion batteries (LIBs). Organic electrode materials featuring void spaces and flexible structures can facilitate the mobility of K+ to enhance the performance of KIBs. We synthesized potassium maleamate (K-MA) from maleamic acid (MA) and applied as an anode material for KIBs and LIBs, with 1 M potassium bis(fluorosulfonyl)imide (KFSI) and 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in a mixture of ethylene carbonate and ethyl methyl carbonate (1:2, v/v) as respective electrolytes. The K-MA_KFSI anode underwent charging/discharging with carbonyl groups at low voltage, due to the K···O bond interaction weaker than Li···O. The K-MA_KFSI and K-MA_LiFSI anode materials delivered a capacity of 172 and 485 mA h g-1 after 200 cycles at 0.1C rate, respectively. K-MA was capable of accepting one K+ in KIB, whereas it could accept two Li+ in a LIB. The superior recoveries performance of K-MA_LiFSI, K-MA_KFSI, and Super P_KFSI at rate of 0.1C were 320, 201, and 105 mA h g-1, respectively. This implies the larger size of K+ can reversibly cycling at high rate.

2.
ACS Appl Mater Interfaces ; 13(6): 7355-7369, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534550

RESUMO

Ni-rich high-energy-density lithium ion batteries pose great risks to safety due to internal short circuits and overcharging; they also have poor performance because of cation mixing and disordering problems. For Ni-rich layered cathodes, these factors cause gas evolution, the formation of side products, and life cycle decay. In this study, a new cathode electrolyte interphase (CEI) for Ni2+ self-oxidation is developed. By using a branched oligomer electrode additive, the new CEI is formed and prevents the reduction of Ni3+ to Ni2+ on the surface of Ni-rich layered cathode; this maintains the layered structure and the cation mixing during cycling. In addition, this new CEI ensures the stability of Ni4+ that is formed at 100% state of charge in the crystal lattice at high temperature (660 K); this prevents the rock-salt formation and the over-reduction of Ni4+ to Ni2+. These findings are obtained using in situ X-ray absorption spectroscopy, operando X-ray diffraction, operando gas chromatography-mass spectroscopy, and X-ray photoelectron spectroscopy. Transmission electron microscopy reveals that the new CEI has an elliptical shape on the material surface, which is approximately 100 nm in length and 50 nm in width, and covers selected particle surfaces. After the new CEI was formed on the surface, the Ni2+ self-oxidation gradually affects from the surface to the bulk of the material. It found that the bond energy and bond length of the Ni-O are stabilized, which dramatically inhibit gas evolution. The new CEI is successfully applied in a Ni-rich layered compound, and the 18650- and the punch-type full cells are fabricated. The energy density of the designed cells is up to 300 Wh/kg. Internal short circuit and overcharging safety tests are passed when using the standard regulations of commercial evaluation. This new CEI technology is ready and planned for future applications in electric vehicle and energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...