Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(11): 3335-3342, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269087

RESUMO

A miniaturized and multiplexed chemical sensing technology is urgently needed to empower mobile devices and robots for various new applications such as mobile health and Internet of Things. Here, we show that a complementary metal-oxide-semiconductor (CMOS) imager can be turned into a multiplexed colorimetric sensing chip by coating micron-scale sensing spots on the CMOS imager surface. Each sensing spot contains nanocomposites of colorimetric sensing probes and silica nanoparticles that enhance sensing signals by several orders of magnitude. The sensitivity is spot-size-invariant, and high-performance gas sensing can be achieved on sensing spots as small as ∼10 µm. This great scalability combined with millions of pixels of a CMOS imager offers a promising platform for highly integrated chemical sensors. To prove its compatibility with mobile electronics, we have built a smartphone accessory based on this chemical CMOS sensor and demonstrated that personal health management can be achieved through the detection of gaseous biomarkers and pollutants. We anticipate that this new platform will pave the way for the widespread application of chemical sensing in mobile electronics and wearable devices.


Assuntos
Semicondutores , Dispositivos Eletrônicos Vestíveis , Óxidos , Colorimetria , Eletrônica , Gases
2.
Biosens Bioelectron ; 195: 113650, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560350

RESUMO

Accurate assessment of dietary macronutrients intake is critical for the effective management of multiple diseases, such as obesity, diabetes, cardiovascular disease, metabolic disease, and cancer. Conventional self-reporting method is burdensome, inaccurate, and often biased. Though blood analysis and breath analysis can provide evidence-based information, they are either invasive or subject to human errors. Here we reported a wearable transdermal volatile biomarkers detection system based on novel colorimetric sensing technology for dietary macronutrients intake assessment. This technique quantifies the emission rates of transdermal volatile biomarkers via a gradient-based colorimetric array sensor (GCAS). The optical system of the GCAS device tracks the localized color development associated with the chemical reaction between the volatile biomarkers and the porous sensing probes, and determines the biomarkers emission rates through image processing algorithms. The localized chemical reaction and the image-based signal processing also make the GCAS capable for multiplexed detection of multiple analytes simultaneously. The GCAS sensor has been applied for transdermal acetone detection on 5 subjects in a keto diet intervention. The study indicates that the transdermal acetone increases after the subjects consuming keto diets and it decreases to basal level after intaking carb-rich diets. The transdermal acetone response from the GCAS sensor correlates well with breath acetone concentration in the range between 0 and 40 ppm and the correlation factor (R2) is as high as 0.8877. This method provides a noninvasive, low-cost, and wearable tool for assessing dietary macronutrients intake outside of lab or hospital settings. It could be widely applied in disease management, weight control, and nutrition management.


Assuntos
Técnicas Biossensoriais , Colorimetria , Acetona , Biomarcadores , Testes Respiratórios , Humanos
3.
IEEE Sens J ; 21(15): 17327-17334, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34744520

RESUMO

Transcutaneous oxygen and carbon dioxide provide the status of pulmonary gas exchange and are of importance in diagnosis and management of respiratory diseases. Though significant progress has been made in oximetry, not much has been explored in developing wearable technologies for continuous monitoring of transcutaneous carbon dioxide. This research reports the development of a truly wearable sensor for continuous monitoring of transcutaneous carbon dioxide using miniaturized nondispersive infrared sensor augmented by hydrophobic membrane to address the humidity interference. The wearable transcutaneous CO2 monitor shows well-behaved response curve to humid CO2 with linear response to CO2 concentration. The profile of transcutaneous CO2 monitored by the wearable device correlates well with the end-tidal CO2 trend in human test. The feasibility of the wearable device for passive and unobstructed tracking of transcutaneous CO2 in free-living conditions has also been demonstrated in field test. The wearable transcutaneous CO2 monitoring technology developed in this research can be widely used in remote assessment of pulmonary gas exchange efficiency for patients with respiratory diseases, such as COVID-19, sleep apnea, and chronic obstructive pulmonary disease (COPD).

4.
Biosensors (Basel) ; 11(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677306

RESUMO

Bluetooth Low Energy (BLE) plays a critical role in wireless data transmission in wearable technologies. The previous work in this field has mostly focused on optimizing the transmission throughput and power consumption. However, not much work has been reported on a systematic evaluation of the data packet loss of BLE in the wearable healthcare ecosystem, which is essential for reliable and secure data transmission. Considering that diverse wearable devices are used as peripherals and off-the-shelf smartphones (Android, iPhone) or Raspberry Pi with various chipsets and operating systems (OS) as hubs in the wearable ecosystem, there is an urgent need to understand the factors that influence data loss in BLE and develop a mitigation solution to address the data loss issue. In this work, we have systematically evaluated packet losses in Android and iOS based wearable ecosystems and proposed a reduced transmission frequency and data bundling strategy along with queue-based packet transmission protocol to mitigate data packet loss in BLE. The proposed protocol provides flexibility to the peripheral device to work with the host either in real-time mode for timely data transmission or offline mode for accumulated data transmission when there is a request from the host. The test results show that lowered transmission frequency and data bundling reduce the packet losses to less than 1%. The queue-based packet transmission protocol eliminates any remaining packet loss by using re-request routines. The data loss mitigation protocol developed in this research can be widely applied to the BLE-based wearable ecosystem for various applications, such as body sensor networks (BSN), the Internet of Things (IoT), and smart homes.


Assuntos
Atenção à Saúde , Tecnologia sem Fio , Algoritmos , Ecossistema , Smartphone , Software , Dispositivos Eletrônicos Vestíveis
5.
Sens Actuators B Chem ; 3452021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326572

RESUMO

Humidity interferes most gas sensors, especially colorimetric sensors. The conventional approaches to minimize the humidity interference in colorimetric gas sensing require using extra components, causing unwanted analytes loss, or limiting the choices of sensing probes to only hydrophobic ones. To explore the possibility of minimizing the humidity interference in a hydrophilic colorimetric sensing system, we have developed a hydrogel-incorporated approach to buffer the humidity influence on the colorimetric gas sensing. The hydrogel-incorporated colorimetric sensors show not only high humidity tolerance but also the improved analytical performance. The accuracy and reliability of the hydrogel-incorporated colorimetric sensors have also been validated in field tests. This hydrogel-incorporated approach will open up an avenue to implement hydrophilic recipes into colorimetric gas sensors and extend the application of colorimetric sensors to humid gases detection.

6.
ACS Sens ; 6(2): 303-320, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33085469

RESUMO

Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications. Although there are comprehensive and insightful review articles about the colorimetric gas sensors, they have focused more on the progress in new sensing materials, new sensing systems, and new applications. There is a need for reviewing the works that have been done to solve the humidity issue, a challenge that the colorimetric gas sensors commonly face. In this review paper, we analyzed the mechanisms of the humidity interference and discussed the approaches that have been reported to mitigate the humidity interference in colorimetric sensing of environmental gases and breath biomarkers. Finally, the future perspectives of colorimetric sensing technologies are also discussed.


Assuntos
Colorimetria , Gases , Biomarcadores , Umidade , Reprodutibilidade dos Testes
7.
Biosens Bioelectron ; 169: 112590, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927349

RESUMO

Compared to heart rate, body temperature and blood pressure, respiratory rate is the vital sign that has been often overlooked, largely due to the lack of easily accessible tool for reliable and natural respiration monitoring. To address this unmet need, we designed and built a wearable, stand-alone, fully integrated mask device for accurate tracking of respiration in free-living conditions. The wearable mask device can provide comprehensive respiration information in a wearable and wireless manner. It can not only accurately measure respiratory rate, tidal volume, respiratory minute volume, and peak flow rate but also recognize unique respiration pattern of the subject via Principle Component Analysis (PCA) algorithms. The reported wearable mask device and respiratory pattern recognition algorithms could be widely used in routine clinical examination, lung function assessment, asthma and chronic obstructive pulmonary disease (COPD) management, metabolic rate measurement, capnography, spirometry, sleep pattern analysis, and biometrics.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca , Monitorização Fisiológica , Respiração
8.
IEEE Sens J ; 19(18): 8252-8261, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326709

RESUMO

Global industrialization and urbanization have led to increased levels of air pollution. Those with respiratory diseases, such as asthma, are at the highest risk for adverse health effects and reduced quality of life. Studying the relationship between pollutants and symptoms is usually achieved with data from government air quality monitoring stations, but these fail to report the spatial and temporal resolution required to track a person's true exposure, especially when the majority of their time is spent indoors. We develop and build eight wrist-worn wearable devices, weighing only 64 g, to measure known asthma symptom triggers: ozone, total volatile organic compounds, temperature, humidity, and activity level. The devices use commercial off-the-shelf components, costing under $150 each to build. This report focuses on the design, calibration, and testing of the devices. Emphasis is placed on the calibration of a metal-oxide-semiconductor gas sensor for detecting ozone, which is a difficult task because of the large variations in ambient temperature and humidity found when using a wearable device. Examples of testing the devices in four real environments are also discussed: 11 days inside a well-ventilated laboratory, ten days outdoors during the summer, alternating the devices between indoor and outdoor environments to examine their response to quickly changing environments, and a field test where scripted activities are performed for a full day. The work demonstrates a wearable device for environmental health studies and addresses the challenges of existing sensors for real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA