Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38684319

RESUMO

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

3.
Curr Probl Diagn Radiol ; 53(2): 226-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37891086

RESUMO

Artificial intelligence (AI) has recently become a trending tool and topic regarding productivity especially with publicly available free services such as ChatGPT and Bard. In this report, we investigate if two widely available chatbots chatGPT and Bard, are able to show consistent accurate responses for the best imaging modality for urologic clinical situations and if they are in line with American College of Radiology (ACR) Appropriateness Criteria (AC). All clinical scenarios provided by the ACR were inputted into ChatGPT and Bard with result compared to the ACR AC and recorded. Both chatbots had an appropriate imaging modality rate of of 62% and no significant difference in proportion of correct imaging modality was found overall between the two services (p>0.05). The results of our study found that both ChatGPT and Bard are similar in their ability to suggest the most appropriate imaging modality in a variety of urologic scenarios based on ACR AC criteria. Nonetheless, both chatbots lack consistent accuracy and further development is necessary for implementation in clinical settings. For proper use of these AI services in clinical decision making, further developments are needed to improve the workflow of physicians.


Assuntos
Inteligência Artificial , Médicos , Humanos , Diagnóstico por Imagem , Acessibilidade aos Serviços de Saúde , Fluxo de Trabalho
4.
Artigo em Inglês | MEDLINE | ID: mdl-37758604

RESUMO

Radiology has usually been the field of medicine that has been at the forefront of technological advances, often being the first to wholeheartedly embrace them. Whether it's from digitization to cloud side architecture, radiology has led the way for adopting the latest advances. With the advent of large language models (LLMs), especially with the unprecedented explosion of freely available ChatGPT, time is ripe for radiology and radiologists to find novel ways to use the technology to improve their workflow. Towards this, we believe these LLMs have a key role in the radiology reading room not only to expedite processes, simplify mundane and archaic tasks, but also to increase the radiologist's and radiologist trainee's knowledge base at a far faster pace. In this article, we discuss some of the ways we believe ChatGPT, and the likes can be harnessed in the reading room.

5.
Eur Radiol ; 33(2): 836-844, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35999374

RESUMO

OBJECTIVES: To test the feasibility of using 3D MRF maps with radiomics analysis and machine learning in the characterization of adult brain intra-axial neoplasms. METHODS: 3D MRF acquisition was performed on 78 patients with newly diagnosed brain tumors including 33 glioblastomas (grade IV), 6 grade III gliomas, 12 grade II gliomas, and 27 patients with brain metastases. Regions of enhancing tumor, non-enhancing tumor, and peritumoral edema were segmented and radiomics analysis with gray-level co-occurrence matrices and gray-level run-length matrices was performed. Statistical analysis was performed to identify features capable of differentiating tumors based on type, grade, and isocitrate dehydrogenase (IDH1) status. Receiver operating curve analysis was performed and the area under the curve (AUC) was calculated for tumor classification and grading. For gliomas, Kaplan-Meier analysis for overall survival was performed using MRF T1 features from enhancing tumor region. RESULTS: Multiple MRF T1 and T2 features from enhancing tumor region were capable of differentiating glioblastomas from brain metastases. Although no differences were identified between grade 2 and grade 3 gliomas, differentiation between grade 2 and grade 4 gliomas as well as between grade 3 and grade 4 gliomas was achieved. MRF radiomics features were also able to differentiate IDH1 mutant from the wild-type gliomas. Radiomics T1 features for enhancing tumor region in gliomas correlated to overall survival (p < 0.05). CONCLUSION: Radiomics analysis of 3D MRF maps allows differentiating glioblastomas from metastases and is capable of differentiating glioblastomas from metastases and characterizing gliomas based on grade, IDH1 status, and survival. KEY POINTS: • 3D MRF data analysis using radiomics offers novel tissue characterization of brain tumors. • 3D MRF with radiomics offers glioma characterization based on grade, IDH1 status, and overall patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Glioma/patologia , Espectroscopia de Ressonância Magnética , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores
6.
Eur J Nucl Med Mol Imaging ; 48(13): 4189-4200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34037831

RESUMO

Magnetic resonance fingerprinting (MRF) is an evolving quantitative MRI framework consisting of unique data acquisition, processing, visualization, and interpretation steps. MRF is capable of simultaneously producing multiple high-resolution property maps including T1, T2, M0, ADC, and T2* measurements. While a relatively new technology, MRF has undergone rapid development for a variety of clinical applications from brain tumor characterization and epilepsy imaging to characterization of prostate cancer, cardiac imaging, among others. This paper will provide a brief overview of current state of MRF technology including highlights of technical and clinical advances. We will conclude with a brief discussion of the challenges that need to be overcome to establish MRF as a quantitative imaging biomarker.


Assuntos
Neoplasias Encefálicas , Epilepsia , Encéfalo , Técnicas de Imagem Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Imagens de Fantasmas
7.
Eur J Nucl Med Mol Imaging ; 48(3): 683-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979059

RESUMO

PURPOSE: This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS: Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS: Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION: Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...