Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745427

RESUMO

Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1-5. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations6-9. However, fundamental questions in the temporal regulation of transcription and enhancer-gene synchrony remain unanswered primarily due to the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq - a novel single-cell nascent RNA sequencing assay using click-chemistry - and unveil the coordinated transcription throughout the genome. scGRO-seq demonstrates the episodic nature of transcription, and estimates burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells. It reveals the co-transcription of functionally related genes and leverages the replication-dependent non-polyadenylated histone genes transcription to elucidate cell-cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq identifies networks of enhancers and genes and indicates that the bursting of transcription at super-enhancers precedes the burst from associated genes. By imparting insights into the dynamic nature of transcription and the origin and propagation of transcription signals, scGRO-seq demonstrates its unique ability to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.

2.
Nat Commun ; 14(1): 1339, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906659

RESUMO

Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. To this end, here we engineer programmable single-transcript RNA sensors in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert target hybridization into a translational output. Dubbed DART VADAR (Detection and Amplification of RNA Triggers via ADAR), our system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. Amplification is mediated by the expression of a hyperactive, minimal ADAR variant and its recruitment to the edit site via an orthogonal RNA targeting mechanism. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. We leverage DART VADAR to detect single nucleotide polymorphisms and modulate translation in response to endogenous transcript levels in mammalian cells.


Assuntos
Edição de Genes , Edição de RNA , Animais , Regulação da Expressão Gênica , RNA/metabolismo , Redes Reguladoras de Genes , Adenosina Desaminase/genética , Mamíferos/genética
3.
Nat Biotechnol ; 40(4): 539-545, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34711989

RESUMO

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.


Assuntos
Biossíntese de Proteínas , RNA , Animais , Mamíferos/genética , Biossíntese de Proteínas/genética , RNA Viral/genética
4.
Nat Genet ; 52(10): 1067-1075, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958950

RESUMO

Distal enhancers play pivotal roles in development and disease yet remain one of the least understood regulatory elements. We used massively parallel reporter assays to perform functional comparisons of two leading enhancer models and find that gene-distal transcription start sites are robust predictors of active enhancers with higher resolution than histone modifications. We show that active enhancer units are precisely delineated by active transcription start sites, validate that these boundaries are sufficient for capturing enhancer function, and confirm that core promoter sequences are necessary for this activity. We assay adjacent enhancers and find that their joint activity is often driven by the stronger unit within the cluster. Finally, we validate these results through functional dissection of a distal enhancer cluster using CRISPR-Cas9 deletions. In summary, definition of high-resolution enhancer boundaries enables deconvolution of complex regulatory loci into modular units.


Assuntos
Elementos Facilitadores Genéticos/genética , Código das Histonas/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , Iniciação da Transcrição Genética
5.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398372

RESUMO

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Nat Rev Genet ; 20(12): 705-723, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31399713

RESUMO

The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interação Gene-Ambiente , Genoma Humano/fisiologia , RNA Mensageiro/biossíntese , Transcrição Gênica/fisiologia , Animais , Humanos , RNA Mensageiro/genética
7.
Genome Res ; 29(6): 969-977, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160376

RESUMO

Chromatin features are characterized by genome-wide assays for nucleosome location, protein binding sites, three-dimensional interactions, and modifications to histones and DNA. For example, assay for transposase accessible chromatin sequencing (ATAC-seq) identifies nucleosome-depleted (open) chromatin, which harbors potentially active gene regulatory sequences; and bisulfite sequencing (BS-seq) quantifies DNA methylation. When two distinct chromatin features like these are assayed separately in populations of cells, it is impossible to determine, with certainty, where the features are coincident in the genome by simply overlaying data sets. Here, we describe methyl-ATAC-seq (mATAC-seq), which implements modifications to ATAC-seq, including subjecting the output to BS-seq. Merging these assays into a single protocol identifies the locations of open chromatin and reveals, unambiguously, the DNA methylation state of the underlying DNA. Such combinatorial methods eliminate the need to perform assays independently and infer where features are coincident.


Assuntos
Cromatina/genética , Metilação de DNA , Sítios de Ligação , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
8.
Nat Genet ; 50(11): 1533-1541, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349116

RESUMO

Eukaryotic RNA polymerase II (Pol II) has been found at both promoters and distal enhancers, suggesting additional functions beyond mRNA production. To understand this role, we sequenced nascent RNAs at single-molecule resolution to unravel the interplay between Pol II initiation, capping and pausing genome-wide. Our analyses identify two pause classes that are associated with different RNA capping profiles. More proximal pausing is associated with less complete capping, less elongation and a more enhancer-like complement of transcription factors than later pausing. Unexpectedly, transcription start sites (TSSs) are predominantly found in constellations composed of multiple divergent pairs. TSS clusters are intimately associated with precise arrays of nucleosomes and correspond with boundaries of transcription factor binding and chromatin modification at promoters and enhancers. TSS architecture is largely unchanged during the dramatic transcriptional changes induced by heat shock. Together, our results suggest that promoter- and enhancer-associated Pol II is a regulatory nexus for integrating information across TSS ensembles.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA/análise , Análise de Sequência de RNA/métodos , Elongação da Transcrição Genética , Transcrição Gênica , Sequência de Bases , Humanos , Células K562 , Ligação Proteica , RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/fisiologia , Sítio de Iniciação de Transcrição
9.
Genes Dev ; 32(1): 1-3, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440223

RESUMO

Following the discovery of widespread enhancer transcription, enhancers and promoters have been found to be far more similar than previously thought. In this issue of Genes & Development, two studies (Henriques and colleagues [pp. 26-41] and Mikhaylichenko and colleagues [pp. 42-57]) shine new light on the transcriptional nature of promoters and enhancers in Drosophila Together, these studies support recent work in mammalian cells that indicates that most active enhancers drive local transcription using factors and mechanisms similar to those of promoters. Intriguingly, enhancer transcription is shown to be coordinated by SPT5- and P-TEFb-mediated pause-release, but the pause half-life is shorter, and termination is more rapid at enhancers than at promoters. Moreover, bidirectional transcription from promoters is associated with enhancer activity, lending further credence to models in which regulatory elements exist along a spectrum of promoter-ness and enhancer-ness. We propose a general unified model to explain possible functions of transcription at enhancers.


Assuntos
Drosophila/genética , Elementos Facilitadores Genéticos , Animais , Regiões Promotoras Genéticas
10.
Cell Rep ; 21(2): 495-507, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020634

RESUMO

Molecular factors that define stem cell identity have recently emerged as oncogenic drivers. For instance, brachyury, a key developmental transcriptional factor, is also implicated in carcinogenesis, most notably of chordoma, through mechanisms that remain elusive. Here, we show that brachyury is a crucial regulator of stemness in chordoma and in more common aggressive cancers. Furthermore, this effect of brachyury is mediated by control of synthesis and stability of Yes-associated protein (YAP), a key regulator of tissue growth and homeostasis, providing an unexpected mechanism of control of YAP expression. We further demonstrate that the brachyury-YAP regulatory pathway is associated with tumor aggressiveness. These results elucidate a mechanism of controlling both tumor stemness and aggressiveness through regulatory coupling of two developmental factors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Proteínas Fetais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Condroma/genética , Condroma/metabolismo , Condroma/patologia , Proteínas Fetais/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Fosfoproteínas/genética , Proteínas com Domínio T/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
11.
Genome Biol ; 18(1): 10, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100260

RESUMO

The mechanistic details of most disease-causing mutations remain poorly explored within the context of regulatory networks. We present a high-resolution three-dimensional integrated regulatory network (iRegNet3D) in the form of a web tool, where we resolve the interfaces of all known transcription factor (TF)-TF, TF-DNA and chromatin-chromatin interactions for the analysis of both coding and non-coding disease-associated mutations to obtain mechanistic insights into their functional impact. Using iRegNet3D, we find that disease-associated mutations may perturb the regulatory network through diverse mechanisms including chromatin looping. iRegNet3D promises to be an indispensable tool in large-scale sequencing and disease association studies.


Assuntos
Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Modelos Moleculares , Mutação , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Epistasia Genética , Regulação da Expressão Gênica , Humanos , Motivos de Nucleotídeos , Fases de Leitura Aberta , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Regiões não Traduzidas
12.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984724

RESUMO

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Assuntos
Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cromatina , Elementos Facilitadores Genéticos , Feminino , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...