Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(1): 010601, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39042797

RESUMO

Nonstabilizerness, also known as "magic," stands as a crucial resource for achieving a potential advantage in quantum computing. Its connection to many-body physical phenomena is poorly understood at present, mostly due to a lack of practical methods to compute it at large scales. We present a novel approach for the evaluation of nonstabilizerness within the framework of matrix product states (MPSs), based on expressing the MPS directly in the Pauli basis. Our framework provides a powerful tool for efficiently calculating various measures of nonstabilizerness, including stabilizer Rényi entropies, stabilizer nullity, and Bell magic, and enables the learning of the stabilizer group of an MPS. We showcase the efficacy and versatility of our method in the ground states of Ising and XXZ spin chains, as well as in circuits dynamics that has recently been realized in Rydberg atom arrays, where we provide concrete benchmarks for future experiments on logical qubits up to twice the sizes already realized.

2.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923836

RESUMO

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA