Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(43): 17626-17642, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28887305

RESUMO

In many Gram-negative bacteria, the peptidoglycan synthase PBP1A requires the outer membrane lipoprotein LpoA for constructing a functional peptidoglycan required for bacterial viability. Previously, we have shown that the C-terminal domain of Haemophilus influenzae LpoA (HiLpoA) has a highly conserved, putative substrate-binding cleft between two α/ß lobes. Here, we report a 2.0 Å resolution crystal structure of the HiLpoA N-terminal domain. Two subdomains contain tetratricopeptide-like motifs that form a concave groove, but their relative orientation differs by ∼45° from that observed in an NMR structure of the Escherichia coli LpoA N domain. We also determined three 2.0-2.8 Å resolution crystal structures containing four independent full-length HiLpoA molecules. In contrast to an elongated model previously suggested for E. coli LpoA, each HiLpoA formed a U-shaped structure with a different C-domain orientation. This resulted from both N-domain twisting and rotation of the C domain (up to 30°) at the end of the relatively immobile interdomain linker. Moreover, a previously predicted hinge between the lobes of the LpoA C domain exhibited variations of up to 12°. Small-angle X-ray scattering data revealed excellent agreement with a model calculated by normal mode analysis from one of the full-length HiLpoA molecules but even better agreement with an ensemble of this molecule and two of the partially extended normal mode analysis-predicted models. The different LpoA structures helped explain how an outer membrane-anchored LpoA can either withdraw from or extend toward the inner membrane-bound PBP1A through peptidoglycan gaps and hence regulate the synthesis of peptidoglycan necessary for bacterial viability.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Ativadores de Enzimas/química , Haemophilus influenzae/química , Proteínas de Ligação às Penicilinas , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Ativadores de Enzimas/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
2.
Biochemistry ; 43(38): 12210-9, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379559

RESUMO

Cysteine desulfurases, designated NifS, IscS, and SufS, cleave L-cysteine to form alanine and an enzyme cysteinyl persulfide intermediate. Genetic studies on the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 have shown that of the three Nif/Isc/SufS-like proteins encoded in its genome only the sequence group II protein, Slr0077/SufS, is essential. This protein has been overexpressed in Escherichia coli, purified to homogeneity, shown to bind pyridoxal-5'-phosphate (PLP) and to catalyze cysteine desulfuration, and characterized in terms of its structure and kinetics. The results suggest that catalysis in the absence of accessory factors has two constituent pathways, one involving nucleophilic attack by C372 to form the Slr0077/SufS-bound cysteinyl persulfide intermediate and the second involving intermolecular attack by the sulfur of a second molecule of the substrate on the initial l-cysteine-PLP complex to form free l-cysteine persulfide. The second pathway is operant in the C372A variant protein, explaining why it retains significant activity, which is proportional to the concentration of l-cysteine (i.e., does not saturate). C-S bond cleavage by the first (normal) pathway is considerably less efficient than the equivalent step in a group I desulfurase (Slr0387) from the same organism (characterized in the accompanying paper). The 1.8 A crystal structure of the protein, which is very similar to that previously reported for E. coli SufS, shows that the loop on which C372 resides is well-ordered and shorter by 11 residues than the corresponding disordered loop of the group I NifS-like protein from Thermotoga maritima. Sequence comparisons establish that the T. maritima and Slr0387 proteins have loops of similar length. The combined structural and kinetic data imply that the modest activity of Slr0077/SufS and other SufS proteins in comparison to their sequence group I (NifS/IscS-like) paralogues results from inefficiency in the nucleophilic attack step associated with differences in the structure or dynamics of this loop. The recent reports that SufS proteins can be activated manyfold by binding to SufE thus implies that the accessory protein either accelerates nucleophilic attack by the conserved cysteine residue of SufS by a conformational mechanism or itself contributes a nucleophilic cysteine for more efficient intermolecular attack.


Assuntos
Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Cianobactérias/enzimologia , Substituição de Aminoácidos/genética , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/isolamento & purificação , Cristalografia por Raios X , Cianobactérias/genética , Cisteína/química , Cisteína/metabolismo , Dissulfetos/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Fosfato de Piridoxal/análise , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral , Fatores de Tempo
3.
Biochemistry ; 42(24): 7497-508, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12809506

RESUMO

The Fe(II)- and alpha-ketoglutarate(alphaKG)-dependent dioxygenases have roles in synthesis of collagen and sensing of oxygen in mammals, in acquisition of nutrients and synthesis of antibiotics in microbes, and in repair of alkylated DNA in both. A consensus mechanism for these enzymes, involving (i) addition of O(2) to a five-coordinate, (His)(2)(Asp)-facially coordinated Fe(II) center to which alphaKG is also bound via its C-1 carboxylate and ketone oxygen; (ii) attack of the uncoordinated oxygen of the bound O(2) on the ketone carbonyl of alphaKG to form a bicyclic Fe(IV)-peroxyhemiketal complex; (iii) decarboxylation of this complex concomitantly with formation of an oxo-ferryl (Fe(IV)=O(2)(-)) intermediate; and (iv) hydroxylation of the substrate by the Fe(IV)=O(2)(-) complex via a substrate radical intermediate, has repeatedly been proposed, but none of the postulated intermediates occurring after addition of O(2) has ever been detected. In this work, an oxidized Fe intermediate in the reaction of one of these enzymes, taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli, has been directly demonstrated by rapid kinetic and spectroscopic methods. Characterization of the intermediate and its one-electron-reduced form (obtained by low-temperature gamma-radiolysis of the trapped intermediate) by Mössbauer and electron paramagnetic resonance spectroscopies establishes that it is a high-spin, formally Fe(IV) complex. Its Mössbauer isomer shift is, however, significantly greater than those of other known Fe(IV) complexes, suggesting that the iron ligands in the TauD intermediate confer significant Fe(III) character to the high-valent site by strong electron donation. The properties of the complex and previous results on related alphaKG-dependent dioxygenases and other non-heme-Fe(II)-dependent, O(2)-activating enzymes suggest that the TauD intermediate is most probably either the Fe(IV)-peroxyhemiketal complex or the taurine-hydroxylating Fe(IV)=O(2)(-) species. The detection of this intermediate sets the stage for a more detailed dissection of the TauD reaction mechanism than has previously been reported for any other member of this important enzyme family.


Assuntos
Escherichia coli/enzimologia , Ferro/química , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Compostos Ferrosos/química , Hidroxilação , Cinética , Oxigenases de Função Mista/genética , Ribonucleotídeo Redutases/química , Espectroscopia de Mossbauer , Taurina/química , Taurina/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA