Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625202

RESUMO

Bacterial vaginosis (BV) is the most frequent vaginal infection in women of reproductive age. It is caused by the overgrowth of anaerobic vaginal pathogens, such as Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia, which are vaginal pathogens detected during the early stages of incident BV and have been found to form multi-species biofilms. Treatment of biofilm-associated infections, such as BV, is challenging. In this study, we tested the role of an investigational engineered phage endolysin, PM-477, in the eradication of dual-species biofilms composed of G. vaginalis-F. vaginae or G. vaginalis-P. bivia. Single-species biofilms formed by these species were also analysed as controls. The effect of PM-477 on biomass and culturability of single- and dual-species biofilms was assessed in vitro using a microtiter plate assay, epifluorescence microscopy, confocal laser scanning microscopy, and quantitative PCR. The results showed that PM-477 was particularly effective in the disruption and reduction of culturability of G. vaginalis biofilms. In dual-species biofilms, PM-477 exhibited lower efficiency but was still able to selectively and significantly eliminate G. vaginalis. Since polymicrobial interactions have been shown to strongly affect the activity of various antibiotics, the activity of PM-477 in dual-species biofilms is a potentially promising result that should be further explored, aiming to completely eradicate multi-species biofilms associated with BV.

2.
Pathogens ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456131

RESUMO

BACKGROUND: Testing of antibiotic resistance of intact vaginal microbiota in pure culture is not feasible. METHODS: Metronidazole, antiseptic octenisept®, antimycotic ciclopirox, bacterial probiotic Lactobacillus crispatus, yeast probiotic Saccharomyces boulardii, Gardnerella-phage-endolysin named phagolysin and phagolysin in combination with probiotics were tested for bacteriolytic activity. Included were vaginal swabs from 38 random women with Amsel-confirmed bacterial vaginosis (BV). Test aliquots were incubated by 37° for 2 and 24 h. Gardnerella, low G+C, Atopobium, lactobacilli, Lactobacillus iners and crispatus, Prevotella-Bacteroides, and Gammaproteobacteria microbial groups were quantified using fluorescence in situ hybridization (FISH). RESULTS: The probiotic strain Lactobacillus crispatus demonstrated the weakest bacteriolytical effects, followed by metronidazole. Both had no impact on Gardnerella species, instead lysing Prevotella-Bacteroides, Enterobacteriaceae (by L.crispatus) or LGC, Atopobium and Prevotella-Bacteroides (by metronidazole) groups of the microbiota. Cytolytic activity on Gardnerella was highly pronounced and increased from octenisept to ciclopirox, phagolysin, phagolysin with L.crispatus, being best in the combination of phagolysin with S.boulardii. Universally active ciclopirox and octenisept® suppressed nearly all microbial groups including those which are regarded as beneficial. Phagolysin had no effect on naturally occurring Lactobacillus crispatus. Conclusions: FISH susceptibility testing allows unique efficacy evaluation of individually adjusted topical therapy without microbial isolation facilitating optimal therapy choice.

3.
Antimicrob Agents Chemother ; 66(5): e0231921, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35416708

RESUMO

Antibiotics are the mainstay of therapy for bacterial vaginosis (BV). However, the rate of treatment failure in patients with recurrent BV is about 50%. Herein, we investigated potential mechanisms of therapy failure, including the propensity of resistance formation and biofilm activity of metronidazole (MDZ), clindamycin (CLI), and PM-477, a novel investigational candidate that is a genetically engineered endolysin with specificity for bacteria of the genus Gardnerella. Determination of the MIC indicated that 60% of a panel of 22 Gardnerella isolates of four different species were resistant to MDZ, while all strains were highly susceptible to CLI and to the endolysin PM-477. Six strains, all of which were initially susceptible to MDZ, were passaged with MDZ or its more potent hydroxy metabolite. All of them generated full resistance after 5 to 10 passages, resulting in MICs of >512 µg/mL. In contrast, only a mild increase in MIC was found for PM-477. There was also no cross-resistance formation, as MDZ-resistant Gardnerella strains remained highly susceptible to PM-477, both in suspension and in preformed biofilms. Strains that were resistant to MDZ in suspension were also tolerant to MDZ at >2,048 µg/mL when growing as biofilm. All strains were susceptible to PM-477 when grown as preformed biofilms, at minimum biofilm eradication concentrations (MBECs) in the range of 1 to 4 µg/mL. Surprisingly, the MBEC of CLI was >512 µg/mL for 7 out of 9 tested Gardnerella strains, all of which were susceptible to CLI when growing in suspension. The observed challenges of MDZ and CLI due to resistance formation and ineffectiveness on biofilm, respectively, could be one explanation for the frequent treatment failures in uncomplicated or recurrent BV. Therefore, the high efficacy of PM-477 in eliminating Gardnerella in in vitro biofilms, as well as its high resilience to resistance formation, makes PM-477 a promising potential alternative for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


Assuntos
Vaginose Bacteriana , Biofilmes , Clindamicina/farmacologia , Clindamicina/uso terapêutico , Endopeptidases , Feminino , Gardnerella , Gardnerella vaginalis , Humanos , Metronidazol/uso terapêutico , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia
4.
Antibiotics (Basel) ; 10(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34827275

RESUMO

Alternative treatments for Escherichia coli infections are urgently needed, and phage therapy is a promising option where antibiotics fail, especially for urinary tract infections (UTI). We used wastewater-isolated phages to test their lytic activity against a panel of 47 E. coli strains reflecting the diversity of strains found in UTI, including sequence type 131, 73 and 69. The plaquing host range (PHR) was between 13 and 63%. In contrast, the kinetic host range (KHR), describing the percentage of strains for which growth in suspension was suppressed for 24 h, was between 0% and 19%, substantially lower than the PHR. To improve the phage host range and their efficacy, we bred the phages by mixing and propagating cocktails on a subset of E. coli strains. The bred phages, which we termed evolution-squared ε2-phages, of a mixture of Myoviridae have KHRs up to 23% broader compared to their ancestors. Furthermore, using constant phage concentrations, Myoviridae ε2-phages suppressed the growth of higher bacterial inocula than their ancestors did. Thus, the ε2-phages were more virulent compared to their ancestors. Analysis of the genetic sequences of the ε2-phages with the broadest host range reveals that they are mosaic intercrossings of 2-3 ancestor phages. The recombination sites are distributed over the whole length of the genome. All ε2-phages are devoid of genes conferring lysogeny, antibiotic resistance, or virulence. Overall, this study shows that ε2-phages are remarkably more suitable than the wild-type phages for phage therapy.

5.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918287

RESUMO

Due to the rapid spread of antibiotic resistance, and the difficulties of treating biofilm-associated infections, alternative treatments for S. aureus infections are urgently needed. We tested the lytic activity of several wild type phages against a panel of 110 S. aureus strains (MRSA/MSSA) composed to reflect the prevalence of S. aureus clonal complexes in human infections. The plaquing host ranges (PHR) of the wild type phages were in the range of 51% to 60%. We also measured what we called the kinetic host range (KHR), i.e., the percentage of strains for which growth in suspension was suppressed for 24 h. The KHR of the wild type phages ranged from 2% to 49%, substantially lower than the PHRs. To improve the KHR and other key pharmaceutical properties, we bred the phages by mixing and propagating cocktails on a subset of S. aureus strains. These bred phages, which we termed evolution-squared (ε2) phages, have broader KHRs up to 64% and increased virulence compared to the ancestors. The ε2-phages with the broadest KHR have genomes intercrossed from up to three different ancestors. We composed a cocktail of three ε2-phages with an overall KHR of 92% and PHR of 96% on 110 S. aureus strains and called it PM-399. PM-399 has a lower propensity to resistance formation than the standard of care antibiotics vancomycin, rifampicin, or their combination, and no resistance was observed in laboratory settings (detection limit: 1 cell in 1011). In summary, ε2-phages and, in particular PM-399, are promising candidates for an alternative treatment of S. aureus infections.

6.
Pathogens ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435575

RESUMO

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13-8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.

7.
Virus Genes ; 54(1): 130-139, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28852930

RESUMO

The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Especificidade de Hospedeiro , Myoviridae/enzimologia , Peptidoglicano/metabolismo , Deleção de Sequência , Staphylococcus/virologia , Endopeptidases/isolamento & purificação , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Myoviridae/genética , Myoviridae/fisiologia , Ligação Proteica , Domínios Proteicos
8.
FEMS Microbiol Lett ; 350(2): 199-208, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24267666

RESUMO

The gene product of orf50 from actinophage µ1/6 of Streptomyces aureofaciens is a putative endolysin, Lyt µ1/6. It has a two-domain modular structure, consisting of an N-terminal catalytic and a C-terminal cell wall binding domain (CBD). Comparative analysis of Streptomyces phage endolysins revealed that they all have a modular structure and contain functional C-terminal domains with conserved amino acids, probably associated with their binding function. A blast analysis of Lyt µ1/6 in conjunction with secondary and tertiary structure prediction disclosed the presence of a PG_binding_1 domain within the CBD. The sequence of the C-terminal domain of lyt µ1/6 and truncated forms of it were cloned and expressed in Escherichia coli. The ability of these CBD variants fused to GFP to bind to the surface of S. aureofaciens NMU was shown by specific binding assays.


Assuntos
Bacteriófagos/genética , Endopeptidases/química , Streptomyces aureofaciens/virologia , Sequência de Aminoácidos , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Streptomyces aureofaciens/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...