Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(32): 13088-93, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22773813

RESUMO

Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations.


Assuntos
Bacillus thuringiensis/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Locomoção/fisiologia , Interações Microbianas/fisiologia , Bacillus thuringiensis/metabolismo , Fluoresceína-5-Isotiocianato , Proteínas de Fluorescência Verde , Cinética , Lisostafina/metabolismo , Microscopia de Fluorescência , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos , Fatores de Tempo , Imagem com Lapso de Tempo
2.
Adv Exp Med Biol ; 715: 333-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21557074

RESUMO

In natural, industrial and medical environments, microorganisms mainly live as structured and organised matrix-encased communities known as biofilms. In these communities, microorganisms demonstrate coordinated behaviour and are able to perform specific functions such as dramatic resistance to antimicrobials, which potentially lead to major public health and industrial problems. It is now recognised that the appearance of such specific biofilm functions is intimately related to the three-dimensional organisation of the biological edifice, and results from multifactorial processes. During the last decade, the emergence of innovative optical microscopy techniques such as confocal laser scanning microscopy in combination with fluorescent labelling has radically transformed imaging in biofilm research, giving the possibility to investigate non-invasively the dynamic mechanisms of formation and reactivity of these biostructures. In this chapter, we discuss the contribution of fluorescence analysis and imaging to the study at different timescales of various processes: biofilm development (hours to days), antimicrobial reactivity within the three-dimensional structure (minutes to hours) or molecular diffusion/reaction phenomena (pico- to milliseconds).


Assuntos
Biofilmes/crescimento & desenvolvimento , Fluorometria/métodos , Microbiologia Ambiental , Recuperação de Fluorescência Após Fotodegradação/métodos , Imageamento Tridimensional , Consórcios Microbianos/fisiologia , Interações Microbianas/fisiologia , Fenômenos Microbiológicos , Microscopia Confocal/métodos , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...