Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood Adv ; 8(3): 712-724, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38127299

RESUMO

ABSTRACT: Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.


Assuntos
Citomegalovirus , Epitopos de Linfócito T , Humanos , Peptídeos , Antígenos HLA-B , Antígenos HLA-A
2.
Artigo em Inglês | MEDLINE | ID: mdl-37385737

RESUMO

OBJECTIVES: JC virus granule cell neuronopathy is a potentially fatal otherwise highly disabling disease without an approved therapeutic option. This case report presents the positive record to T-cell therapy in JC virus granule cell neuronopathy. METHODS: The patient represented with subacute cerebellar symptoms. Diagnosis of JC virus granule cell neuronopathy was made because of infratentorially accentuated brain volume atrophy shown by brain MRI and the detection of JC virus DNA in the CSF. RESULTS: Six doses of virus-specific T cells were administered. Within 12 months after therapy initiation, the patient showed clear clinical benefit with improvement of symptoms, and JC viral DNA load significantly declined. DISCUSSION: We present the case report of a positive response to T-cell therapy in JC virus granule cell neuronopathy, leading to an improvement of symptoms.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Vírus JC , Humanos , Cerebelo , Atrofia , Terapia Baseada em Transplante de Células e Tecidos
3.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37159273

RESUMO

BACKGROUNDAdoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications.METHODSWe provide results of a personalized T cell manufacturing program evaluating donor, patient, T cell product, and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T lymphocyte (EBV-CTL) products from stem cell donors (SCDs), related third-party donors (TPDs), or unrelated TPDs from the allogeneic T cell donor registry (alloCELL) at Hannover Medical School were manufactured by immunomagnetic selection using a CliniMACS Plus or Prodigy device and the EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated, and patient outcome and side effects were retrieved by retrospective chart analysis.RESULTSForty clinical-grade EBV-CTL products from SCDs, related TPDs, or unrelated TPDs were generated for 37 patients with refractory EBV infections or EBV-associated malignancies with and without a history of transplantation, within 5 days (median) after donor identification. Thirty-four patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to a complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16 of 18 monitored patients (89%) after transfer, and their presence correlated with clinical response.CONCLUSIONPersonalized clinical-grade manufacture of EBV-CTL products via immunomagnetic selection from SCDs, related TPDs, or unrelated TPDs in a timely manner is feasible. Overall, EBV-CTLs were clinically effective and well tolerated. Our data suggest EBV-CTL transfer as a promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT, as well as patients with preexisting organ dysfunction.TRIAL REGISTRATIONNot applicable.FUNDINGThis study was funded in part by the German Research Foundation (DFG, 158989968/SFB 900), the Deutsche Kinderkrebsstiftung (DKS 2013.09), Wilhelm-Sander-Stiftung (reference 2015.097.1), Ellen-Schmidt-Program of Hannover Medical School, and German Federal Ministry of Education and Research (reference 01EO0802).


Assuntos
Infecções por Vírus Epstein-Barr , Imunoterapia Adotiva , Humanos , Herpesvirus Humano 4 , Imunoterapia Adotiva/métodos , Estudos Retrospectivos , Linfócitos T Citotóxicos , Doadores não Relacionados
4.
Front Immunol ; 14: 878953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033971

RESUMO

Introduction: In immunocompromised patients, Epstein-Barr virus (EBV) infection or reactivation is associated with increased morbidity and mortality, including the development of B-cell lymphomas. The first-line treatment consists of reduction of immunosuppression and administration of rituximab (anti-CD20 antibody). Furthermore, the presence of EBV-specific T cells against latent EBV proteins is crucial for the control of EBV-associated diseases. Therefore, in addition to effective treatment strategies, appropriate monitoring of T cells of high-risk patients is of great importance for improving clinical outcome. In this study, we hypothesized that rituximab-mediated lysis of malignant EBV-infected B cells leads to the release and presentation of EBV-associated antigens and results in an augmentation of EBV-specific effector memory T-cell responses. Methods: EBV-infected B lymphoblastoid cell lines (B-LCLs) were used as a model for EBV-associated lymphomas, which are capable of expressing latency stage II and III EBV proteins present in all known EBV-positive malignant cells. Rituximab was administered to obtain cell lysates containing EBV antigens (ACEBV). Efficiency of cross-presentation of EBV-antigen by B-LCLs compared to cross-presentation by professional antigen presenting cells (APCs) such as dendritic cells (DCs) and B cells was investigated by in vitro T-cell immunoassays. Deep T-cell profiling of the tumor-reactive EBV-specific T cells in terms of activation, exhaustion, target cell killing, and cytokine profile was performed, assessing the expression of T-cell differentiation and activation markers as well as regulatory and cytotoxic molecules by interferon-γ (IFN-γ) EliSpot assay, multicolor flow cytometry, and multiplex analyses. Results: By inhibiting parts of the cross-presentation pathway, B-LCLs were shown to cross-present obtained exogenous ACEBV-derived antigens mainly through major histocompatibility complex (MHC) class I molecules. This mechanism is comparable to that for DCs and B cells and resulted in a strong EBV-specific CD8+ cytotoxic T-cell response. Stimulation with ACEBV-loaded APCs also led to the activation of CD4+ T helper cells, suggesting that longer peptide fragments are processed via the classical MHC class II pathway. In addition, B-LCLs were also found to be able to take up exogenous antigens from surrounding cells by endocytosis leading to induction of EBV-specific T-cell responses although to a much lesser extent than cross-presentation of ACEBV-derived antigens. Increased expression of activation markers CD25, CD71 and CD137 were detected on EBV-specific T cells stimulated with ACEBV-loaded APCs, which showed high proliferative and cytotoxic capacity as indicated by enhanced EBV-specific frequencies and increased secretion levels of cytotoxic effector molecules (e.g. IFN-γ, granzyme B, perforin, and granulysin). Expression of the regulatory proteins PD-1 and Tim-3 was induced but had no negative impact on effector T-cell functions. Conclusion: In this study, we showed for the first time that rituximab-mediated lysis of EBV-infected tumor cells can efficiently boost EBV-specific endogenous effector memory T-cell responses through cross-presentation of EBV-derived antigens. This promotes the restoration of antiviral cellular immunity and presents an efficient mechanism to improve the treatment of CD20+ EBV-associated malignancies. This effect is also conceivable for other therapeutic antibodies or even for therapeutically applied unmodified or genetically modified T cells, which lead to the release of tumor antigens after specific cell lysis.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Humanos , Herpesvirus Humano 4 , Rituximab/farmacologia , Rituximab/uso terapêutico , Imunidade Celular , Antígenos , Terapia Baseada em Transplante de Células e Tecidos
5.
Front Immunol ; 14: 988947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090716

RESUMO

Introduction: Aspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. Methods: To facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-γ) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). Results: For the fast CSA-based approach we detected IFN-γ+ ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4+ helper T cells with a central-memory phenotype were expanded while CD8+ T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-γ. Discussion: For patients with IA, the immediate adoptive transfer of IFN-γ+ ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.


Assuntos
Aspergilose , Linfócitos T CD8-Positivos , Aspergillus fumigatus , Aspergilose/terapia , Linfócitos T Auxiliares-Indutores , Imunoterapia , Interferon gama
6.
Transplant Cell Ther ; 29(6): 391.e1-391.e7, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934995

RESUMO

Human adenovirus (HAdV) infection is a serious complication that can lead to significant morbidity and mortality, especially in immunocompromised pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Control and elimination of HAdV requires the presence of the respective antiviral T cells, and adoptive transfer of virus-specific T cells has become an important new treatment option for patients refractory to antiviral treatment. Although the adenoviral capsid protein hexon is known to be a major immunodominant T cell target across HAdV species, up to 30% of HAdV-seropositive donors show no T cell responses to the overlapping peptide pool spanning the entire protein. Our group recently verified the capsid protein penton as a second immunodominant target in HAdV infection. Here we aimed to investigate the prevalence of both penton-specific and hexon-specific HAdV T cells and their impact in virus control after HSCT. We analyzed the prevalence and characteristics of HAdV-specific T cells in 33 consecutive pediatric patients with HAdV reactivation following allogeneic HSCT and correlated them with viral load analysis. Our study demonstrates that penton is an important immunodominant target antigen of HAdV reactivation/ infection after HSCT in most patients. We demonstrate that in the majority of patients, both penton- and hexon-specific T cells appear at similar time intervals after transplantation. Despite the prevalence for either hexon-specific or penton-specific T cells in individual patients, we were unable to attribute the predominance to specific HLA types or HAdV serotypes. The occurrence of HAdV-specific T cells was closely linked to viral control, arguing for immune monitoring strategies to tailor antiviral treatment and adoptive T cell therapy.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Proteínas do Capsídeo , Linfócitos T , Adenoviridae , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/etiologia , Antivirais
7.
Front Bioeng Biotechnol ; 10: 867042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480981

RESUMO

Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3+ cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease.

8.
Transfus Med Hemother ; 49(1): 30-43, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35221866

RESUMO

INTRODUCTION: Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (TN) from DLIs was implemented to reduce the risk of GvHD induction while preserving antiviral memory T-cell activity. Here, we compared two TN depletion strategies via CD45RA and CD62L expression and investigated the presence of antiviral memory T cells against human adenovirus (AdV) and Epstein-Barr virus (EBV) in the depleted fractions in relation to their functional and immunophenotypic characteristics. METHODS: T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within TN-depleted (CD45RA-/CD62L-) and TN-enriched (CD45RA+/CD62L+) fractions were quantified by interferon-gamma (IFN-γ) ELISpot assay after short- and long-term in vitro stimulation. T-cell frequencies and immunophenotypic composition were assessed in all fractions by flow cytometry. Moreover, alloimmune T-cell responses were evaluated by mixed lymphocyte reaction. RESULTS: According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA- fraction were up to 2 times higher than those in the CD62L- fraction, with the highest increase (up to 4-fold) observed after 7 days for ppEBV_EBNA1-specific T cells. The CD4+ effector memory T cells (TEM) were mainly responsible for EBV_EBNA1- and AdV_Hexon-specific T-cell responses, whereas the main functionally active T cells against ppEBV_Consensus were CD8+ central memory T cells (TCM) and TEM. Moreover, comparison of both depletion strategies indicated that alloreactivity in CD45RA- was lower than that in CD62L- fraction. CONCLUSION: Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating TN-depleted products consisting of memory T cells against ppEBV_EBNA1 and ppAdV_Hexon than CD62L in terms of depletion effectiveness, T-cell functionality and alloreactivity. To maximally exploit the beneficial effects mediated by antiviral memory T cells in TN-depleted products, depletion methods should be selected individually according to phenotype composition and CD4/CD8 antigen restriction. TN-depleted DLIs may improve the clinical outcome in terms of infections, GvHD, and disease relapse if selection of pathogen-specific donor T cells is not available.

9.
J Clin Immunol ; 42(3): 546-558, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34989946

RESUMO

Viral infections and reactivations are major causes of morbidity and mortality after hematopoietic stem cell (HSCT) and solid organ transplantation (SOT) as well as in patients with immunodeficiencies. Latent herpesviruses (e.g., cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6), lytic viruses (e.g., adenovirus), and polyomaviruses (e.g., BK virus, JC virus) can cause severe complications. Antiviral drugs form the mainstay of treatment for viral infections and reactivations after transplantation, but they have side effects and cannot achieve complete viral clearance without prior reconstitution of functional antiviral T-cell immunity. The aim of this study was to establish normal ranges for virus-specific T-cell (VST) frequencies in healthy donors. Such data are needed for better interpretation of VST frequencies observed in immunocompromised patients. Therefore, we measured the frequencies of VSTs against 23 viral protein-derived peptide pools from 11 clinically relevant human viruses in blood from healthy donors (n = 151). Specifically, we determined the VST frequencies by interferon-gamma enzyme-linked immunospot assay and classified their distribution according to age and gender to allow for a more specific evaluation and prediction of antiviral immune responses. The reference values established here provide an invaluable tool for immune response evaluation, intensity of therapeutic drugs and treatment decision-making in immunosuppressed patients. This data should make an important contribution to improving the assessment of immune responses in immunocompromised patients.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Viroses , Antivirais , Herpesvirus Humano 4 , Humanos , Hospedeiro Imunocomprometido , Valores de Referência , Linfócitos T , Viroses/diagnóstico
10.
Front Med (Lausanne) ; 8: 770381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901085

RESUMO

Since its declaration as a pandemic in March 2020, SARS-CoV-2 has infected more than 217 million people worldwide and despite mild disease in the majority of the cases, more than 4.5 million cases of COVID-19-associated death have been reported as of September 2021. The question whether recovery from COVID-19 results in prevention of reinfection can be answered with a "no" since cases of reinfections have been reported. The more important question is whether during SARS-CoV-2 infection, a protective immunity is built and maintained afterwards in a way which protects from possibly severe courses of disease in case of a reinfection. A similar question arises with respect to vaccination: as of September 2021, globally, more than 5.2 billion doses of vaccines have been administered. Therefore, it is of utmost importance to study the cellular and humoral immunity toward SARS-CoV-2 in a longitudinal manner. In this study, reconvalescent COVID-19 patients have been followed up for more than 1 year after SARS-CoV-2 infection to characterize in detail the long-term humoral as well as cellular immunity. Both SARS-CoV-2-specific T cells and antibodies could be detected for a period of more than 1 year after infection, indicating that the immune protection established during initial infection is maintained and might possibly protect from severe disease in case of reinfection or infection with novel emerging variants. Moreover, these data demonstrate the opportunity for immunotherapy of hospitalized COVID-19 patients via adoptive transfer of functional antiviral T cells isolated from reconvalescent individuals.

11.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567252

RESUMO

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Imunidade Celular/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adulto Jovem
12.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127653

RESUMO

BACKGROUND: Immunosuppressive therapy or T-cell depletion in transplant patients can cause uncontrolled growth of Epstein-Barr virus (EBV)-infected B cells resulting in post-transplant lymphoproliferative disease (PTLD). Current treatment options do not distinguish between healthy and malignant B cells and are thereby often limited by severe side effects in the already immunocompromised patients. To specifically target EBV-infected B cells, we developed a novel peptide-selective chimeric antigen receptor (CAR) based on the monoclonal antibody TÜ165 which recognizes an Epstein-Barr nuclear antigen (EBNA)-3C-derived peptide in HLA-B*35 context in a T-cell receptor (TCR)-like manner. In order to attract additional immune cells to proximity of PTLD cells, based on the TÜ165 CAR, we moreover generated T cells redirected for universal cytokine-mediated killing (TRUCKs), which induce interleukin (IL)-12 release on target contact. METHODS: TÜ165-based CAR-T cells (CAR-Ts) and TRUCKs with inducible IL-12 expression in an all-in-one construct were generated. Functionality of the engineered cells was assessed in co-cultures with EBNA-3C-peptide-loaded, HLA-B*35-expressing K562 cells and EBV-infected B cells as PTLD model. IL-12, secreted by TRUCKs on target contact, was further tested for its chemoattractive and activating potential towards monocytes and natural killer (NK) cells. RESULTS: After co-cultivation with EBV target cells, TÜ165 CAR-Ts and TRUCKs showed an increased activation marker expression (CD137, CD25) and release of proinflammatory cytokines (interferon-γ and tumor necrosis factor-α). Moreover, TÜ165 CAR-Ts and TRUCKs released apoptosis-inducing mediators (granzyme B and perforin) and were capable to specifically lyse EBV-positive target cells. Live cell imaging revealed a specific attraction of TÜ165 CAR-Ts around EBNA-3C-peptide-loaded target cells. Of note, TÜ165 TRUCKs with inducible IL-12 showed highly improved effector functions and additionally led to recruitment of monocyte and NK cell lines. CONCLUSIONS: Our results demonstrate that TÜ165 CAR-Ts recognize EBV peptide/HLA complexes in a TCR-like manner and thereby allow for recognizing an intracellular EBV target. TÜ165 TRUCKs equipped with inducible IL-12 expression responded even more effectively and released IL-12 recruited additional immune cells which are generally missing in proximity of lymphoproliferation in immunocompromised PTLD patients. This suggests a new and promising strategy to specifically target EBV-infected cells while sparing and mobilizing healthy immune cells and thereby enable control of EBV-associated lymphoproliferation.


Assuntos
Epitopos/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos HLA-B/metabolismo , Imunoterapia Adotiva/métodos , Feminino , Humanos , Masculino
13.
J Transl Med ; 18(1): 148, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238166

RESUMO

BACKGROUND: Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor's peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach. METHODS: This pilot study was designed as a cross-over trial and compared the effect of a single bout (30 min) of high-intensity interval training (HIT) with that of 30 min of continuous exercise (CONT) on the frequency and function of circulating donor VSTs. To this end, we used established immunoassays to examine the donors' cellular immune status, in particular, with respect to the frequency and specific characteristics of VSTs restricted against Cytomegalovirus (CMV)-, Epstein-Barr-Virus (EBV)- and Adenovirus (AdV)-derived antigens. T-cell function, phenotype, activation and proliferation were examined at different time points before and after exercise to identify the most suitable time for T-cell donation. The clinical applicability was determined by small-scale T-cell enrichment using interferon- (IFN-) γ cytokine secretion assay and virus-derived overlapping peptide pools. RESULTS: HIT proved to be the most effective exercise program with up to fivefold higher VST response. In general, donors with a moderate fitness level had higher starting and post-exercise frequencies of VSTs than highly fit donors, who showed significantly lower post-exercise increases in VST frequencies. Both exercise programs boosted the number of VSTs against less immunodominant antigens, specifically CMV (IE-1), EBV (EBNA-1) and AdV (Hexon, Penton), compared to VSTs against immunodominant antigens with higher memory T-cell frequencies. CONCLUSION: This study demonstrates that exercise before T-cell donation has a beneficial effect on the donor's cellular immunity with respect to the proportion of circulating functionally active VSTs. We conclude that a single bout of HIT exercise 24 h before T-cell donation can significantly improve manufacturing of clinically applicable VSTs. This simple and economical adjuvant treatment proved to be especially efficient in enhancing virus-specific memory T cells with low precursor frequencies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Treinamento Intervalado de Alta Intensidade , Imunoterapia Adotiva , Projetos Piloto , Linfócitos T
14.
Transpl Infect Dis ; 22(1): e13201, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31643129

RESUMO

Adenovirus (HAdV) infections confer a high risk of morbidity and mortality for immunocompromised patients after stem cell transplantation (SCT). Treatment with standard antiviral drugs is of limited efficacy and associated with a high rate of adverse effects. HAdV-specific T cells are crucial for sustained viral elimination and the efficacy of adoptive T-cell therapy with donor-derived HAdV-specific T cells has been reported by several investigators. Here, we report our experience with the transfer of HAdV-specific T cells specific for penton, which was recently identified as an immunodominant target of T cells, and hexon in a 14-year-old boy after T-cell-depleted haploidentical SCT for myelodysplastic syndrome (MDS). He developed severe HAdV-associated enteritis complicated by acute graft-versus-host disease (GvHD). The patient received ten infusions of allogeneic HAdV-specific T cells manufactured from the haploidentical stem cell donor using the CliniMacs Interferon-γ (IFN-γ) cytokine capture and immunomagnetic selection. Initially, T cells were generated against the immunodominant target hexon and in subsequent transfers dual antigen-specific T cells against hexon and penton were applied. T-cell transfers were scheduled individually tailored to current immunosuppressive treatment. Each transfer was followed by reduction of HAdV load in peripheral blood and clinical improvement. Importantly, T-cell responses to both penton and hexon pools emerged in patient blood after repetitive transfers. Unfortunately, the patient experienced bacterial sepsis, and in this context, severe GvHD requiring intensive immunosuppression followed by secondary progression of HAdV infection. The patient succumbed to multiorgan failure 283 days after SCT. This case demonstrates the feasibility of HAdV-specific T-cell transfer even in the presence of immunosuppressive treatment. Targeting of multiple immunodominant viral proteins may prove valuable in patients with complicated HAdV infections.


Assuntos
Infecções por Adenovirus Humanos/terapia , Transferência Adotiva/métodos , Proteínas do Capsídeo/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T/imunologia , Transplante Homólogo/efeitos adversos , Infecções por Adenovirus Humanos/etiologia , Infecções por Adenovirus Humanos/imunologia , Adolescente , Doença Enxerto-Hospedeiro/complicações , Humanos , Masculino , Sepse/microbiologia , Sepse/mortalidade , Doadores de Tecidos
15.
Blood Adv ; 3(6): 839-850, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867143

RESUMO

Dendritic cells (DCs) take up antigen in the periphery, migrate to secondary lymphoid organs, and present processed antigen fragments to adaptive immune cells and thus prime antigen-specific immunity. During local inflammation, recirculating monocytes are recruited from blood to the inflamed tissue, where they differentiate to macrophages and DCs. In this study, we found that monocytes showed high transporter associated with antigen processing (TAP)-dependent peptide compartmentalization and that after antigen pulsing, they were not able to efficiently stimulate antigen-specific T lymphocytes. Nevertheless, upon in vitro differentiation to monocyte-derived DCs, TAP-dependent peptide compartmentalization as well as surface major histocompatibility complex I turnover decreased and the cells efficiently restimulated T lymphocytes. Although TAP-dependent peptide compartmentalization decreased during DC differentiation, TAP expression levels increased. Furthermore, TAP relocated from early endosomes in monocytes to the endoplasmic reticulum (ER) and lysosomal compartments in DCs. Collectively, these data are compatible with the model that during monocyte-to-DC differentiation, the subcellular relocation of TAP and the regulation of its activity assure spatiotemporal separation of local antigen uptake and processing by monocytes and efficient T-lymphocyte stimulation by DCs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Compartimento Celular , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Monócitos/citologia , Apresentação de Antígeno/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Lisossomos/metabolismo , Monócitos/imunologia , Linfócitos T/imunologia
16.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897843

RESUMO

Viral infections and reactivations remain a serious obstacle to successful hematopoietic stem cell transplantation (HSCT). When antiviral drug treatment fails, adoptive virus-specific T-cell transfer provides an effective alternative. Assuming that naive T cells (TN) are mainly responsible for GvHD, methods were developed to generate naive T-cell-depleted products while preserving immune memory against viral infections. We compared two major strategies to deplete potentially alloreactive T cells: CD45RA and CD62L depletion and analyzed phenotype and functionality of the resulting CD45RA-/CD62L- naive T-cell-depleted as well as CD45RA⁺/CD62L⁺ naive T-cell-enriched fractions in the CMV pp65 and IE1 antigen model. CD45RA depletion resulted in loss of terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA), and CD62L depletion in loss of central memory T cells (TCM). Based on these differences in target cell-dependent and target cell-independent assays, antigen-specific T-cell responses in CD62L-depleted fraction were consistently 3⁻5 fold higher than those in CD45RA-depleted fraction. Interestingly, we also observed high donor variability in the CD45RA-depleted fraction, resulting in a substantial loss of immune memory. Accordingly, we identified donors with expected response (DER) and unexpected response (DUR). Taken together, our results showed that a naive T-cell depletion method should be chosen individually, based on the immunophenotypic composition of the T-cell populations present.


Assuntos
Imunoterapia/métodos , Selectina L/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citomegalovirus/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Imunofenotipagem , Microesferas , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
17.
Int J Mol Sci ; 20(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678050

RESUMO

Wilms tumor protein-1 (WT1) is an attractive target for adoptive T-cell therapy due to its expression in solid tumors and hematologic malignancies. However, T cells recognizing WT1 occur in low frequencies in the peripheral blood of healthy donors, limiting potential therapeutic possibilities. Tin mesoporphyrin (SnMP) is known to inhibit heme oxygenase-1 (HO-1), which has been shown to boost the activation and proliferation of human virus-specific T cells. We analyzed the influence of this effect on the generation of WT1-specific T cells and developed strategies for generating quantities of these cells from healthy donors, sufficient for adoptive T-cell therapies. HO-1 inhibition with SnMP increased WT1-specific T-cell frequencies in 13 (26%) of 50 healthy donors. To assess clinical applicability, we measured the enrichment efficiency of SnMP-treated WT1-specific T cells in response to a WT1-specific peptide pool and a HLA-A*02:01-restricted WT1 peptide by cytokine secretion assay. SnMP treatment resulted in a 28-fold higher enrichment efficacy with equal functionality. In conclusion, pharmacological inhibition of HO-1 activity with SnMP results in more efficient generation of functionally active WT1-specific T cells. This study demonstrates the therapeutic potentials of inhibiting HO-1 with SnMP to enhance antigen-specific T-cell responses in the treatment of cancer patients with WT1-positive disease.


Assuntos
Heme Oxigenase-1/antagonistas & inibidores , Imunoterapia , Neoplasias/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Proteínas WT1/imunologia , Antígenos de Neoplasias/imunologia , Biomarcadores , Estudos de Casos e Controles , Citocinas/metabolismo , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Neoplasias/metabolismo , Neoplasias/terapia , Subpopulações de Linfócitos T , Linfócitos T/metabolismo
18.
Front Med (Lausanne) ; 6: 295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921871

RESUMO

Post-transplant lymphoproliferative disease (PTLD) represents a serious complication following allogeneic hematopoietic stem cell transplantation (alloHSCT). Previously, survival rates of PTLD have improved due to the introduction of rituximab. However, reports on curative management of refractory PTLD are scarce. Today, there is no consensus how to treat rituximab-refractory PTLD, especially in highly aggressive disease. Here, we describe successful management of refractory EBV-associated PTLD, specifically DLBCL, with combined brentuximab vedotin and third-party EBV-specific T-cells in a multidisciplinary treatment approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...