Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Oncol ; 18(9): 1165-1183, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37182602

RESUMO

INTRODUCTION: Although targeted therapies have revolutionized the therapeutic landscape of lung adenocarcinomas (LUADs), disease progression on single-agent targeted therapy against known oncogenic drivers is common, and therapeutic options after disease progression are limited. In patients with MDM2 amplification (MDM2amp) and a concurrent oncogenic driver alteration, we hypothesized that targeting of the tumor-suppressor pathway (by means of restoration of p53 using MDM2 inhibition) and simultaneous targeting of co-occurring MAPK oncogenic pathway might represent a more durably effective therapeutic strategy. METHODS: We evaluated genomic next-generation sequencing data using the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets platform to nominate potential targets for combination therapy in LUAD. We investigated the small molecule MDM2 inhibitor milademetan in cell lines and patient-derived xenografts of LUAD with a known driver alteration and MDM2amp. RESULTS: Of 10,587 patient samples from 7121 patients with LUAD profiled by next-generation sequencing, 6% (410 of 7121) harbored MDM2amp. MDM2amp was significantly enriched among tumors with driver alterations in METex14 (36%, p < 0.001), EGFR (8%, p < 0.001), RET (12%, p < 0.01), and ALK (10%, p < 0.01). The combination of milademetan and the MEK inhibitor trametinib was synergistic in growth inhibition of ECLC5-GLx (TRIM33-RET/MDM2amp), LUAD12c (METex14/KRASG12S/MDM2amp), SW1573 (KRASG12C, TP53 wild type), and A549 (KRASG12S) cells and in increasing expression of proapoptotic proteins PUMA and BIM. Treatment of ECLC5-GLx and LUAD12c with single-agent milademetan increased ERK phosphorylation, consistent with previous data on ERK activation with MDM2 inhibition. This ERK activation was effectively suppressed by concomitant administration of trametinib. In contrast, ERK phosphorylation induced by milademetan was not suppressed by concurrent RET inhibition using selpercatinib (in ECLC5-GLx) or MET inhibition using capmatinib (in LUAD12c). In vivo, combination milademetan and trametinib was more effective than either agent alone in ECLC5-GLx, LX-285 (EGFRex19del/MDM2amp), L13BS1 (METex14/MDM2amp), and A549 (KRASG12S, TP53 wild type). CONCLUSIONS: Combined MDM2/MEK inhibition was found to have efficacy across multiple patient-derived LUAD models harboring MDM2amp and concurrent oncogenic drivers. This combination, potentially applicable to LUADs with a wide variety of oncogenic driver mutations and kinase fusions activating the MAPK pathway, has evident clinical implications and will be investigated as part of a planned phase 1/2 clinical trial.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Progressão da Doença , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/genética , Fatores de Transcrição/genética
2.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
3.
Genome Med ; 14(1): 127, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380343

RESUMO

BACKGROUND: Diffuse pleural mesothelioma (DPM) is an aggressive malignancy that, despite recent treatment advances, has unacceptably poor outcomes. Therapeutic research in DPM is inhibited by a paucity of preclinical models that faithfully recapitulate the human disease. METHODS: We established 22 patient-derived xenografts (PDX) from 22 patients with DPM and performed multi-omic analyses to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these PDX models and compared features to those of the matched primary patient tumors. Targeted next-generation sequencing (NGS; MSK-IMPACT), immunohistochemistry, and histologic subtyping were performed on all available samples. RNA sequencing was performed on all available PDX samples. Clinical outcomes and treatment history were annotated for all patients. Platinum-doublet progression-free survival (PFS) was determined from the start of chemotherapy until radiographic/clinical progression and grouped into < or ≥ 6 months. RESULTS: PDX models were established from both treatment naïve and previously treated samples and were noted to closely resemble the histology, genomic landscape, and proteomic profiles of the parent tumor. After establishing the validity of the models, transcriptomic analyses demonstrated overexpression in WNT/ß-catenin, hedgehog, and TGF-ß signaling and a consistent suppression of immune-related signaling in PDXs derived from patients with worse clinical outcomes. CONCLUSIONS: These data demonstrate that DPM PDX models closely resemble the genotype and phenotype of parental tumors, and identify pathways altered in DPM for future exploration in preclinical studies.


Assuntos
Mesotelioma , Transcriptoma , Animais , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Proteômica , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Genômica , Modelos Animais de Doenças
4.
Nat Commun ; 13(1): 2144, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440124

RESUMO

Access to clinically relevant small cell lung cancer (SCLC) tissue is limited because surgical resection is rare in metastatic SCLC. Patient-derived xenografts (PDX) and circulating tumor cell-derived xenografts (CDX) have emerged as valuable tools to characterize SCLC. Here, we present a resource of 46 extensively annotated PDX/CDX models derived from 33 patients with SCLC. We perform multi-omic analyses, using targeted tumor next-generation sequencing, RNA-sequencing, and immunohistochemistry to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these SCLC models. SCLC subtypes characterized by transcriptional regulators, ASCL1, NEUROD1 and POU2F3 are confirmed in this cohort. A subset of SCLC clinical specimens, including matched PDX/CDX and clinical specimen pairs, confirm that the primary features and genomic and proteomic landscapes of the tumors of origin are preserved in the derivative PDX models. This resource provides a powerful system to study SCLC biology.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteômica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Transcriptoma/genética
5.
iScience ; 24(11): 103224, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34712921

RESUMO

Activation of mitogenic signaling pathways is a common oncogenic driver of many solid tumors including lung cancer. Although activating mutations in the mitogen-activated protein kinase (MAPK) pathway are prevalent in non-small cell lung cancers, MAPK pathway activity, counterintuitively, is relatively suppressed in the more aggressively proliferative small cell lung cancer (SCLC). Here, we elucidate the role of the MAPK pathway and how it interacts with other signaling pathways in SCLC. We find that the most common SCLC subtype, SCLC-A associated with high expression of ASCL1, is selectively sensitive to MAPK activation in vitro and in vivo through induction of cell-cycle arrest and senescence. We show strong upregulation of ERK negative feedback regulators and STAT signaling upon MAPK activation in SCLC-A lines. These findings provide insight into the complexity of signaling networks in SCLC and suggest subtype-specific mitogenic vulnerabilities.

6.
Science ; 373(6559): eabc1048, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516843

RESUMO

Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cell­derived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Cromatina/metabolismo , Melanoma/genética , Melanoma/patologia , Crista Neural/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Neoplasias Experimentais , Células-Tronco Neoplásicas/patologia , Crista Neural/metabolismo , Células-Tronco Pluripotentes/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcrição Gênica , Peixe-Zebra
7.
Cancer Discov ; 11(12): 3028-3047, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34155000

RESUMO

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre/posttransformation samples, supports that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in the PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacologic inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer. SIGNIFICANCE: The difficulty in collection of transformation samples has precluded the performance of molecular analyses, and thus little is known about the lineage plasticity mechanisms leading to LUAD-to-SCLC transformation. Here, we describe biological pathways dysregulated upon transformation and identify potential predictors and potential therapeutic vulnerabilities of NE transformation in the lung. See related commentary by Meador and Lovly, p. 2962. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Tumores Neuroendócrinos , Carcinoma de Pequenas Células do Pulmão , Adenocarcinoma de Pulmão/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Fosfatidilinositol 3-Quinases/genética , Carcinoma de Pequenas Células do Pulmão/patologia
8.
Nat Struct Mol Biol ; 28(1): 92-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398171

RESUMO

Spo11, which makes DNA double-strand breaks (DSBs) that are essential for meiotic recombination, has long been recalcitrant to biochemical study. We provide molecular analysis of Saccharomyces cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal topoisomerase VI, with Rec104 occupying a position similar to the Top6B GHKL-type ATPase domain. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), consistent with dimerization controlling DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.


Assuntos
Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Meiose/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Microscopia de Força Atômica , Mutação/genética , Conformação de Ácido Nucleico , Recombinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Cell Cycle ; 16(20): 1870-1884, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820351

RESUMO

The SPO11-generated DNA double-strand breaks (DSBs) that initiate meiotic recombination occur non-randomly across genomes, but mechanisms shaping their distribution and repair remain incompletely understood. Here, we expand on recent studies of nucleotide-resolution DSB maps in mouse spermatocytes. We find that trimethylation of histone H3 lysine 36 around DSB hotspots is highly correlated, both spatially and quantitatively, with trimethylation of H3 lysine 4, consistent with coordinated formation and action of both PRDM9-dependent histone modifications. In contrast, the DSB-responsive kinase ATM contributes independently of PRDM9 to controlling hotspot activity, and combined action of ATM and PRDM9 can explain nearly two-thirds of the variation in DSB frequency between hotspots. DSBs were modestly underrepresented in most repetitive sequences such as segmental duplications and transposons. Nonetheless, numerous DSBs form within repetitive sequences in each meiosis and some classes of repeats are preferentially targeted. Implications of these findings are discussed for evolution of PRDM9 and its role in hybrid strain sterility in mice. Finally, we document the relationship between mouse strain-specific DNA sequence variants within PRDM9 recognition motifs and attendant differences in recombination outcomes. Our results provide further insights into the complex web of factors that influence meiotic recombination patterns.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Genoma , Meiose/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sítios de Ligação , Centrômero/metabolismo , Cromossomos de Mamíferos/metabolismo , Troca Genética , DNA/metabolismo , Endodesoxirribonucleases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Polimorfismo Genético
10.
Cell ; 167(3): 695-708.e16, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27745971

RESUMO

Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica/genética , Recombinação Homóloga , Meiose/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/enzimologia , Nucleossomos/genética , Cromossomo X/genética , Cromossomo Y/genética
11.
PLoS Genet ; 9(8): e1003732, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009525

RESUMO

Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles.


Assuntos
Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Retroelementos/genética , Reparo do DNA/genética , Instabilidade Genômica , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética
12.
Am J Hum Genet ; 91(5): 823-38, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23063622

RESUMO

Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering ∼2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos/genética , Locos de Características Quantitativas , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Feminino , Genótipo , Humanos , Lipídeos/sangue , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Triglicerídeos/sangue , Triglicerídeos/genética , População Branca
13.
Cell Cycle ; 11(8): 1496-503, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22433953

RESUMO

During meiosis in many organisms, homologous chromosomes engage in numerous recombination events initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. DSBs are distributed nonrandomly, which governs how recombination influences inheritance and genome evolution. The chromosomal features that shape DSB distribution are not well understood. In the budding yeast Saccharomyces cerevisiae, trimethylation of lysine 4 of histone H3 (H3K4me3) has been suggested to play a causal role in targeting Spo11 activity to small regions of preferred DSB formation called hotspots. The link between H3K4me3 and DSBs is supported in part by a genome-wide spatial correlation between the two. However, this correlation has only been evaluated using relatively low-resolution maps of DSBs, H3K4me3 or both. These maps illuminate chromosomal features that influence DSB distributions on a large scale (several kb and greater) but do not adequately resolve features, such as chromatin structure, that act on finer scales (kb and shorter). Using recent nucleotide-resolution maps of DSBs and meiotic chromatin structure, we find that the previously described spatial correlation between H3K4me3 and DSB hotspots is principally attributable to coincident localization of both to gene promoters. Once proximity to the nucleosome-depleted regions in promoters is accounted for, H3K4me3 status has only modest predictive power for determining DSB frequency or location. This analysis provides a cautionary tale about the importance of scale in genome-wide analyses of DSB and recombination patterns.


Assuntos
Histonas/genética , Meiose , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell ; 144(5): 719-31, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376234

RESUMO

The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Estudo de Associação Genômica Ampla , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...