Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 50(6): 919-30, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23806337

RESUMO

Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.


Assuntos
Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Respiração Celular , Células Cultivadas , Sequência Consenso , Glicosilação , Cinética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Transporte Proteico , Proteoma/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Sirtuínas/genética , Succinato Desidrogenase/metabolismo
2.
PLoS Genet ; 8(9): e1002948, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028355

RESUMO

FoxO transcription factors and sirtuin family deacetylases regulate diverse biological processes, including stress responses and longevity. Here we show that the Caenorhabditis elegans sirtuin SIR-2.4--homolog of mammalian SIRT6 and SIRT7 proteins--promotes DAF-16-dependent transcription and stress-induced DAF-16 nuclear localization. SIR-2.4 is required for resistance to multiple stressors: heat shock, oxidative insult, and proteotoxicity. By contrast, SIR-2.4 is largely dispensable for DAF-16 nuclear localization and function in response to reduced insulin/IGF-1-like signaling. Although acetylation is known to regulate localization and activity of mammalian FoxO proteins, this modification has not been previously described on DAF-16. We find that DAF-16 is hyperacetylated in sir-2.4 mutants. Conversely, DAF-16 is acetylated by the acetyltransferase CBP-1, and DAF-16 is hypoacetylated and constitutively nuclear in response to cbp-1 inhibition. Surprisingly, a SIR-2.4 catalytic mutant efficiently rescues the DAF-16 localization defect in sir-2.4 null animals. Acetylation of DAF-16 by CBP-1 in vitro is inhibited by either wild-type or mutant SIR-2.4, suggesting that SIR-2.4 regulates DAF-16 acetylation indirectly, by preventing CBP-1-mediated acetylation under stress conditions. Taken together, our results identify SIR-2.4 as a critical regulator of DAF-16 specifically in the context of stress responses. Furthermore, they reveal a novel role for acetylation, modulated by the antagonistic activities of CBP-1 and SIR-2.4, in modulating DAF-16 localization and function.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sirtuínas , Fatores de Transcrição , Acetilação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Histona Acetiltransferases/metabolismo , Longevidade/genética , Longevidade/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
3.
Handb Exp Pharmacol ; 206: 163-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21879450

RESUMO

In eukaryotes, mitochondria carry out numerous functions that are central to cellular and organismal health. How mitochondrial activities are regulated in response to differing environmental conditions, such as variations in diet, remains an important unsolved question in biology. Here, we review emerging evidence suggesting that reversible acetylation of mitochondrial proteins on lysine residues represents a key mechanism by which mitochondrial functions are adjusted to meet environmental demands. In mammals, three members of the sirtuin class of NAD(+)-dependent deacetylases - SIRT3, SIRT4, and SIRT5 - localize to mitochondria and regulate targets involved in a diverse array of biochemical pathways. The importance of this activity is highlighted by recent studies of SIRT3 indicating that this protein suppresses the emergence of diverse age-related pathologies: hearing loss, cardiac fibrosis, and malignancy. Together, these findings argue that mitochondrial protein acetylation represents a central means by which mammals regulate mitochondrial functions to maintain cellular and organismal homeostasis.


Assuntos
Metabolismo Energético , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Sirtuínas/metabolismo , Acetilação , Adaptação Fisiológica , Envelhecimento/metabolismo , Animais , Homeostase , Humanos , Lisina , Fenótipo , Processamento de Proteína Pós-Traducional
4.
Endocrinology ; 149(2): 558-64, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17974622

RESUMO

We have previously shown that the active form of vitamin D, 1,25 dihydroxyvitamin D3 [1,25(OH)(2)D(3)], has both genomic and rapid nongenomic effects in heart cells; however, the subcellular localization of the vitamin D receptor (VDR) in heart has not been studied. Here we show that in adult rat cardiac myocytes the VDR is primarily localized to the t-tubule. Using immunofluorescence and Western blot analysis, we show that the VDR is closely associated with known t-tubule proteins. Radioligand binding assays using (3)H-labeled 1,25(OH)(2)D(3) demonstrate that a t-tubule membrane fraction isolated from homogenized rat ventricles contains a 1,25(OH)(2)D(3)-binding activity similar to the classic VDR. For the first time, we show that cardiac myocytes isolated from VDR knockout mice show accelerated rates of contraction and relaxation as compared with wild type and that 1,25(OH)(2)D(3) directly affects contractility in the wild-type but not the knockout cardiac myocyte. Moreover, we observed that acute (5 min) exposure to 1,25(OH)(2)D(3) altered the rate of relaxation. A receptor localized to t-tubules in the heart is ideally positioned to exert an immediate effect on signal transduction mediators and ion channels. This novel discovery is fundamentally important in understanding 1,25(OH)(2)D(3) signal transduction in heart cells and provides further evidence that the VDR plays a role in heart structure and function.


Assuntos
Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Animais , Calcitriol/metabolismo , Feminino , Camundongos , Camundongos Knockout , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Trítio
5.
J Steroid Biochem Mol Biol ; 103(3-5): 533-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17276054

RESUMO

The steroid hormone 1,25(OH)(2)-vitamin D(3) [1,25D] has been shown to affect the growth and proliferation of primary cultures of ventricular myocytes isolated from neonatal rat hearts. The research presented here shows that the vitamin D receptor [VDR] is present in murine cardiac myocytes (HL-1 cells), and that 1,25D affects the growth, proliferation and morphology of these cells. In addition we show that 1,25D effects expression of ANP, myotrophin, and c-myc. Furthermore, 1,25D effects expression and localization of the VDR within the cell. Murine HL-1 cardiac myocytes were grown and treated with 1,25D in culture, and growth and morphology were assessed with microscopic analysis. Cells were counted and protein levels were evaluated through Western blot analysis. Subcellular localization of the VDR was determined using immunofluorescence and confocal microscopy. 1,25D was found to decrease proliferation and alter cellular morphology of the HL-1 cells. Treatment with 1,25D increased expression of myotrophin while decreasing expression of atrial natriuretic peptide [ANP] and c-myc. 1,25D treatment also increased expression and nuclear localization of the VDR in these cardiac myocytes. Thus 1,25D is an important hormone involved in modulating and maintaining heart cell structure and function.


Assuntos
Calcifediol/farmacologia , Tamanho Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colecalciferol , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...