Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2747: 211-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038943

RESUMO

Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Metaloproteinases da Matriz , Microscopia Intravital , Movimento Celular , Microambiente Tumoral
2.
Blood Adv ; 6(10): 3126-3141, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35157757

RESUMO

Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. Its prognosis remains poor, highlighting the need for new therapeutic and precision medicine approaches. AML symptoms often include cytopenias linked to loss of healthy hematopoietic stem and progenitor cells (HSPCs). The mechanisms behind HSPC decline are complex and still poorly understood. Here, intravital microscopy (IVM) of a well-established experimental model of AML allows direct observation of the interactions between healthy and malignant cells in the bone marrow (BM), suggesting that physical dislodgment of healthy cells by AML through damaged vasculature may play an important role. Multiple matrix metalloproteinases (MMPs), known to remodel extracellular matrix, are expressed by AML cells and the BM microenvironment. We reason MMPs could be involved in cell displacement and vascular leakiness; therefore, we evaluate the therapeutic potential of MMP pharmacological inhibition using the broad-spectrum inhibitor prinomastat. IVM analyses of prinomastat-treated mice reveal reduced vascular permeability and healthy cell clusters in circulation and lower AML infiltration, proliferation, and cell migration. Furthermore, treated mice have increased retention of healthy HSPCs in the BM and increased survival following chemotherapy. Analysis of a human AML transcriptomic database reveals widespread MMP deregulation, and human AML cells show susceptibility to MMP inhibition. Overall, our results suggest that MMP inhibition could be a promising complementary therapy to reduce AML growth and limit HSPC loss and BM vascular damage caused by MLL-AF9 and possibly other AML subtypes.


Assuntos
Leucemia Mieloide Aguda , Animais , Medula Óssea/patologia , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Metaloproteases , Camundongos , Prognóstico , Microambiente Tumoral
3.
J Cell Sci ; 133(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31822630

RESUMO

Mechanical cues are essential for the regulation of cell and tissue physiology. Hence, it has become an utmost necessity for cell biologists to account for those mechanical parameters when investigating biological processes and they need devices to manipulate cells accordingly. Here, we report a simple mechanical cell-stretching system that can generate uniaxial cyclic mechanical stretch on cells in tissue culture. This system is based upon a low-cost battery-powered uniaxial cyclic mechanical stretcher exclusively built out of LEGO® parts combined with a stretchable poly(dimethylsiloxane) tissue culture plate in order to grow and stretch cells. We characterize the system and show that it can be used in a wide variety of downstream applications, including immunofluorescence, western blotting and biochemical assays. We also illustrate how this system can be useful in a study as we investigated the behavior of integrin adhesion complexes upon cell stretching. We therefore present a cost-effective, multipurpose cell-stretching system that should help to increase understanding of mechanical signaling.This article has an associated First Person interview with the first author of the paper.


Assuntos
Células Cultivadas/metabolismo , Estresse Mecânico , Células Cultivadas/citologia , Humanos
4.
Nat Commun ; 9(1): 4862, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451822

RESUMO

Mechanical and metabolic cues independently contribute to the regulation of cell and tissue homeostasis. However, how they cross-regulate each other during this process remains largely unknown. Here, we show that cellular metabolism can regulate integrin rigidity-sensing via the sphingolipid metabolic pathway controlled by the amino acid transporter and integrin coreceptor CD98hc (SLC3A2). Genetic invalidation of CD98hc in dermal cells and tissue impairs rigidity sensing and mechanical signaling downstream of integrins, including RhoA activation, resulting in aberrant tissue mechanical homeostasis. Unexpectedly, we found that this regulation does not occur directly through regulation of integrins by CD98hc but indirectly, via the regulation of sphingolipid synthesis and the delta-4-desaturase DES2. Loss of CD98hc decreases sphingolipid availability preventing proper membrane recruitment, shuttling and activation of upstream regulators of RhoA including Src kinases and GEF-H1. Altogether, our results unravel a novel cross-talk regulation between integrin mechanosensing and cellular metabolism which may constitute an important new regulatory framework contributing to mechanical homeostasis.


Assuntos
Fibroblastos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Mecanotransdução Celular , Complexos Multienzimáticos/genética , Oxirredutases/genética , Esfingolipídeos/biossíntese , Animais , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/deficiência , Regulação da Expressão Gênica , Homeostase , Lipogênese , Camundongos , Camundongos Transgênicos , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Cultura Primária de Células , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP , Quinases da Família src/genética , Quinases da Família src/metabolismo
5.
J Invest Dermatol ; 138(12): 2511-2521, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29906411

RESUMO

Skin homeostasis relies on fine-tuning of epidermis-dermis interactions and is affected by aging. While extracellular matrix (ECM) proteins, such as integrins, are involved in aging, the molecular basis of the skin changes needs to be investigated further. Here, we showed that integrin co-receptor, SLC3A2, required for cell proliferation, is expressed at the surface of resting dermal fibroblasts in young patients and is reduced drastically with aging. In vivo SLC3A2 dermal fibroblast deletion induced major skin phenotypes resembling premature aging. Knockout mice (3 months old) presented strong defects in skin elasticity due to altered ECM assembly, which impairs epidermal homeostasis. SLC3A2 dermal fibroblast loss led to an age-associated secretome profile, with 77% of identified proteins belonging to ECM and ECM-associated proteins. ECM not only contributes to skin mechanical properties, but it is also a reservoir of growth factors and bioactive molecules. We demonstrate that dermal fibroblast SLC3A2 is required for ECM to fully exert its structural and reservoir role allowing proper and efficient TGF-ß localization and activation. We identified SLC3A2 as a protective controller of dermal ECM stiffness and quality required to maintain the epidermis to dermis interface as functional and dynamic.


Assuntos
Senilidade Prematura/genética , Derme/patologia , Epitélio/fisiologia , Fibroblastos/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Animais , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico , Fator de Crescimento Transformador beta/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 44(5): 812-821, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27900521

RESUMO

PURPOSE: F-FDOPA is a highly sensitive and specific radiopharmaceutical for pheochromocytoma and paraganglioma (PPGL) imaging. However, 18F-FDOPA might be falsely negative in these tumors, especially those related to mutations in succinate dehydrogenase genes (SDHx). The aim of the present study was to evaluate the relationship between expression of L-DOPA transporters and 18F-FDOPA PET imaging results in PPGL. METHODS: From 2007 to 2015, 175 patients with non-metastatic PPGL were evaluated by 18F-FDOPA PET/CT for initial diagnosis/staging and follow-up. 18F-FDOPA PET/CT was considered as falsely negative for at least one lesion in 10/126 (8%) patients (two sporadic, six SDHD, two SDHB PPGLs). The mRNA and protein expression levels of CD98hc and LATs were evaluated in samples with different genetic backgrounds and imaging phenotypes. The qRT-PCR and immunohistochemical analyses were performed in 14 and 16 tumor samples, respectively. RESULTS: The SDHx mutated samples exhibited a significant decrease in mRNA expression of LAT3 when compared to sporadic PPGLs (P = 0.042). There was also a statistical trend toward decreased CD98hc (P = 0.147) and LAT4 (P = 0.012) levels in SDHx vs sporadic PPGLs. No difference was observed for LAT1/LAT2 mRNA levels. LAT1 protein was expressed in 15 out of 16 (93.75%) SDHx tumors, regardless of the 18F-FDOPA positivity. LAT1 and CD98hc were co-expressed in 6/8 18F-FDOPA-negative PPGLs. In contrast, in one case with absence of LAT1/CD98hc, 18F-FDOPA uptake was positive and attributed to LAT4 expression. CONCLUSIONS: We conclude that down-regulation of LAT1/CD98hc cannot explain the imaging phenotype of SDHx-related PPGLs. A reduced activity of LAT1 remains the primary hypothesis possibly due to a modification of intracellular amino acid content which may reduce 18F-FDOPA uptake.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Sistema L de Transporte de Aminoácidos/genética , Di-Hidroxifenilalanina/análogos & derivados , Genótipo , Paraganglioma/diagnóstico por imagem , Feocromocitoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias das Glândulas Suprarrenais/genética , Idoso , Reações Falso-Negativas , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Paraganglioma/genética , Feocromocitoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Succinato Desidrogenase/genética
7.
Eur J Cell Biol ; 95(11): 475-482, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27461124

RESUMO

Skin, by nature, is very similar to the Rouquayrol-Denayrouze suit mentioned by Jules Verne in Twenty Thousand Leagues Under the Sea: it allows "to risk (…) new physiological conditions without suffering any organic disorder". Mechanical cues, to the same extent as other environmental parameters, are such "new physiological conditions". Indeed, skin's primary function is to form a protective barrier to shield inner tissues from the external environment. This requires unique mechanical properties as well as the ability to sense mechanical cues from the environment in order to prevent or repair mechanical damages as well as to function as the primary mechanosensory interface of the whole body.


Assuntos
Derme/fisiologia , Mecanotransdução Celular/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Humanos
8.
Cancer Res ; 74(23): 6878-89, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267066

RESUMO

CD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis. Deleting CD98hc after tumor induction was also sufficient to cause regression of existing tumors. Investigations into the basis for these effects defined two new functions of CD98hc that contribute to epithelial cancer beyond an intrinsic effect of CD98hc on tumor cell proliferation. First, CD98hc increased the stiffness of the tumor microenvironment. Second, CD98hc amplified the capacity of cells to respond to matrix rigidity, an essential factor in tumor development. Mechanistically, CD98hc mediated this stiffness sensing by increasing Rho kinase (ROCK) activity, resulting in increased transcription mediated by YAP/TAZ, a nuclear relay for mechanical signals. Our results suggest that CD98hc contributes to carcinogenesis by amplifying a positive feedback loop, which increases both extracellular matrix stiffness and resulting cellular responses. This work supports a rationale to explore the use of CD98hc inhibitors as cancer therapeutics.


Assuntos
Carcinogênese/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Integrinas/metabolismo , Proteínas ras/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/patologia , Proteínas de Ciclo Celular , Proliferação de Células/fisiologia , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Mecanotransdução Celular , Camundongos , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia , Fatores de Transcrição/metabolismo , Microambiente Tumoral/fisiologia , Proteínas de Sinalização YAP , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...