Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601028

RESUMO

Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.

2.
Sci Rep ; 13(1): 12578, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537233

RESUMO

Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction.


Assuntos
Ecossistema , Foraminíferos , Foraminíferos/genética , Mar Mediterrâneo , Oceano Índico , Reprodução
3.
Sci Rep ; 13(1): 13473, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596363

RESUMO

Coralline algae form complex habitats which are biodiversity hotspots. Experimental studies suggest that climate change will decrease coralline algal structural integrity. These experiments, however, lack information on local morphological variability and how much structural change would be needed to threaten habitat formation. Here, using finite element modelling, we assess variability in cellular structure and chemical composition of the carbonate skeleton of four coralline algal species from Britain in contemporary and historical specimens collected over the last 130 years. Cellular and mineral properties are highly variable within species, between sites and through time, with structurally weaker cells in the southern species and contemporary material compared to northern taxa and historical material. Yet, temporal differences in strength were smaller than spatial differences. Our work supports long term experiments which show the adaptation potential of this group. Our results suggest that future anthropogenic climate change may lead to loss of habitat complexity in the south and expansion of structurally weaker southern species into northern sites.


Assuntos
Aclimatação , Biodiversidade , Mudança Climática , Compostos Radiofarmacêuticos , Esqueleto
4.
Sci Total Environ ; 806(Pt 2): 150581, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582868

RESUMO

Rising sea surface temperatures and extreme heat waves are affecting symbiont-bearing tropical calcifiers such as corals and Large Benthic Foraminifera (LBF). In many ecosystems, parallel to warming, global change unleashes a host of additional changes to the marine environment, and the combined effect of such multiple stressors may be far greater than those of temperature alone. One such additional stressor, positively correlated to temperature in evaporation-dominated shallow-water settings is rising salinity. Here we used laboratory culture experiments to evaluate the combined thermohaline tolerance of one of the most common LBF species and carbonate producer, Amphistegina lobifera. The experiments were done under ambient (39 psu) and modified (30, 45, 50 psu) salinities and at optimum (25 °C) and warm temperatures (32 °C). Calcification of the A. lobifera holobiont was evaluated by measuring alkalinity loss in the culturing seawater, as an indication of carbonate ion uptake. The vitality of the symbionts was determined by monitoring pigment loss of the holobiont and their photosynthetic performances by measuring dissolved oxygen. We further evaluated the growth of Peneroplis (P. pertusus and P. planatus), a Rhodophyta bearing LBF, which is known to tolerate high temperatures, under elevated salinities. The results show that the A. lobifera holobiont exhibits optimal performance at 39 psu and 25 °C, and its growth is significantly reduced upon exposure to 30, 45, 50 psu and under all 32 °C treatments. Salinity and temperature exhibit a significant interaction, with synergic effects observed in most treatments. Our results confirm that Peneroplis has a higher tolerance to elevated temperature and salinity compared to A. lobifera, implying that a further increase of salinity and temperatures may result in a regime shift from Amphistegina- to Peneroplis-dominated assemblages.


Assuntos
Foraminíferos , Proliferação de Células , Ecossistema , Salinidade , Água do Mar , Temperatura
5.
Mar Environ Res ; 161: 105084, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32889446

RESUMO

Considering the thermal limits of coastal macroalgae habitats in the South-Eastern Mediterranean, it is important to study the response of the associated meiofauna to better understand the expected feedback of ecosystems to future warming. In this study, we compared benthic foraminiferal assemblages from two common macroalgal habitats, Turf and Coralline algae, based on ecological monitoring of a thermally polluted station representing near future warming, and an undisturbed environment. None of the common local species is confined to a specific algal habitat. This implies that their existence is not threatened by the disappearance of the Coralline algae. However, most likely their community structure will be impacted with coastal warming. Species that are more affiliated with Coralline algae are highly thermally tolerant, thus their proliferation might be reduced with warming. Specifically, the negative response of Coralline algae to warming may limit the contribution of invasive species such as Pararotalia calcariformata.


Assuntos
Foraminíferos , Alga Marinha , Ecossistema , Espécies Introduzidas
6.
Sci Rep ; 9(1): 4198, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862914

RESUMO

The Eastern Mediterranean is experiencing a large-scale invasion of alien tropical species from the Red Sea. This "Lessepsian invasion" began with the opening of the Suez Canal and is promoted by the ongoing oceanic warming. The environmental differences between the Red Sea and the Mediterranean act as a buffer allowing the invasion of certain species. This provides an opportunity to study the differences in temperature sensitivity between two sibling species of the cosmopolitian foraminifera Amphistegina. Both species are very common in the Red Sea. Whilest, only one is a successful invader and the other is absent in the Eastern Mediterranean. Here we show that the two species are different in their temperature sensitivity, which explains their selective invasion into the Mediterranean. These differences demonstrate that in respect to climate change resilient marine species can be distinguished by their ability to compensate for temperature changes by adjusting their physiological performance and by having tolerance to a wider temperature range. Moreover, we demonstrate that selective filtering mechanisms during invasion can prefer species that are more resilient to colder rather than expected warmer temperatures.


Assuntos
Ecossistema , Foraminíferos/crescimento & desenvolvimento , Aquecimento Global , Espécies Introduzidas , Modelos Biológicos , Oceano Índico , Mar Mediterrâneo
7.
Mar Pollut Bull ; 128: 65-71, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29571413

RESUMO

In order to establish environmentally sustainable industries there is a need for high-resolution temporal and spatial monitoring of heavy metal pollutants even at low concentrations before they become hazardous for local ecosystems. Here we present single chamber records of Cu, Zn and Pb in shells of two benthic foraminifera species with different shell types from two shallow coastal stations in Israel: An area adjacent to an electrical power plant and desalination factory (Hadera) and an industrially free nature reserve (Nachsholim). Records of both foraminifera species show elevated metal concentrations in Hadera clearly identifying the footprint of the local industrial facilities. Moreover, short-term events of elevated Cu and Pb concentrations were detected by single chamber analyses. This study demonstrates the potential of using heavy metals anomalies in foraminiferal single chambers as a tool for detecting the industrial footprint of coastal facilities as well as short term events of elevated heavy metals.


Assuntos
Monitoramento Ambiental/métodos , Foraminíferos/efeitos dos fármacos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , Indústrias , Israel , Metais Pesados/toxicidade , Centrais Elétricas , Poluentes Químicos da Água/toxicidade
8.
Glob Chang Biol ; 23(10): 4346-4353, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28423462

RESUMO

Shallow marine calcifiers play an important role as marine ecosystem engineers and in the global carbon cycle. Understanding their response to warming is essential to evaluate the fate of marine ecosystems under global change scenarios. A rare opportunity to test the effect of warming acting on natural ecosystems is by investigation of heat-polluted areas. Here, we study growth and calcification in benthic foraminifera that inhabit a thermally polluted coastal area in Israel, where they are exposed to elevated temperatures reaching up to ~42°C in summer. Live specimens of two known heat-tolerant species Lachlanella sp. 1 and Pararotalia calcariformata were collected over a period of 1 year from two stations, representing thermally polluted and undisturbed (control) shallow hard bottom habitats. Single-chamber element ratios of these specimens were obtained using laser ablation, and the Mg/Ca of the most recently grown final chambers were used to calculate their calcification temperatures. Our results provide the first direct field evidence that these foraminifera species not only persist at extreme warm temperatures but continue to calcify and grow. Species-specific Mg/Ca thermometry indicates that P. calcariformata precipitate their shells at temperatures as high as 40°C and Lachlanella sp. 1 at least up to 36°C, but both species show a threshold for calcification at cold temperatures: calcification in P. calcariformata only occurred above 22°C and in Lachlanella sp. 1 above 15°C. Our observations from the heat-polluted area indicate that under future warming scenarios, calcification in heat-tolerant foraminifera species will not be inhibited during summer, but instead the temperature window for their calcification will be expanded throughout much of the year. The observed inhibition of calcification at low temperatures indicates that the role of heat-tolerant foraminifera in carbonate production will most likely increase in future decades.


Assuntos
Cálcio/química , Foraminíferos , Temperatura Alta , Israel , Água do Mar , Temperatura
9.
Mar Pollut Bull ; 105(1): 324-36, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26895595

RESUMO

Persistent thermohaline pollution at a site along the northern coast of Israel, due to power and desalination plants, is used as a natural laboratory to evaluate the effects of rising temperature and salinity levels on benthic foraminifera living in shallow hard-bottom habitats. Biomonitoring of the disturbed area and a control station shows that elevated temperature is a more significant stressor compared to salinity, thus causing a decrease in abundance and richness. Critical temperature thresholds were observed at 30 and 35°C, the latter representing the most thermally tolerant species in the studied area Pararotalia calcariformata, which is the only symbiont-bearing species observed within the core of the heated area. Common species of the shallow hard-bottom habitats including several Lessepsian invaders are almost absent in the most exposed site indicating that excess warming will likely impede the survival of these species that currently benefit from the ongoing warming of the Eastern Mediterranean.


Assuntos
Ecossistema , Monitoramento Ambiental , Foraminíferos/fisiologia , Água do Mar/química , Temperatura , Israel
10.
PLoS One ; 10(11): e0142263, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539992

RESUMO

Textularia agglutinans d'Orbigny is a non-symbiont bearing and comparatively large benthic foraminiferal species with a widespread distribution across all oceans. In recent years, its populations have considerably expanded along the Israeli Mediterranean coast of the eastern Levantine basin. Despite its exceptionally widespread occurrence, no molecular data have yet been obtained. This study provides the first ribosomal DNA sequences of T. agglutinans complemented with morphological and ecological characterization, which are based on material collected during environmental monitoring of the hard bottom habitats along the Israeli Mediterranean coast, and from the Gulf of Elat (northern Red Sea). Our phylogenetic analyses reveal that all specimens from both provinces belong to the same genetic population, regardless their morphological variability. These results indicate that modern population of T. agglutinans found on the Mediterranean coast of Israel is probably Lessepsian. Our study also reveals that T. agglutinans has an epiphytic life mode, which probably enabled its successful colonization of the hard bottom habitats, at the Mediterranean coast of Israel, which consist of a diverse community of macroalgae. Our study further indicates that the species does not tolerate high SST (> 35°C), which will probably prevent its future expansion in the easternmost Mediterranean in light of the expected rise in temperatures.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , DNA Ribossômico/genética , Ecologia , Ecossistema , Monitoramento Ambiental/métodos , Genética Populacional/métodos , Oceano Índico , Israel , Mar Mediterrâneo , Oceanos e Mares , Filogenia , Análise de Sequência de DNA
11.
PLoS One ; 10(8): e0132917, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270964

RESUMO

The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species was discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.


Assuntos
Mudança Climática , Ecossistema , Foraminíferos , Espécies Introduzidas , Simbiose , Biodiversidade , Foraminíferos/classificação , Foraminíferos/genética , Região do Mediterrâneo , Modelos Teóricos , Fotoquímica , Filogenia , Reprodução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...