Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111711

RESUMO

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Assuntos
Fator 4 Nuclear de Hepatócito , Metabolismo dos Lipídeos , Animais , Feminino , Camundongos , Carboidratos , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Mol Cell Biol ; 35(20): 3471-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240283

RESUMO

The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/ß-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/ß-catenin/TCF4 and AP-1 pathways.


Assuntos
Neoplasias Colorretais/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Sequência de Bases , Ligação Competitiva , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sequência Consenso , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células HCT116 , Humanos , Masculino , Camundongos Nus , Transplante de Neoplasias , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Isoformas de Proteínas/fisiologia , Transcriptoma , Carga Tumoral
3.
Protist ; 164(2): 195-205, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23058793

RESUMO

Reconstructing the early evolution of fungi and metazoans, two of the kingdoms of multicellular eukaryotes thriving on earth, is a challenging task for biologists. Among extant organisms having characters intermediate between fungi and hypothetical protistan ancestors, from which both fungi and metazoans are believed to have evolved, aphelids are unfairly neglected. The phylogenetic position of these microalgal endoparasites remained uncertain, since no nucleotide sequence data have been reported to date. Aphelids resemble some primitive zoosporic fungi in life cycle, but, unlike fungi, they live by phagotrophy. Here we present a phylogeny, in which a cultured aphelid species, Amoeboaphelidium protococcarum, forms a monophyletic group with Rozella and microsporidia as a sister group to Fungi. We also report a non-canonical nuclear genetic code in A. protococcarum.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Filogenia , Sequência de Aminoácidos , Evolução Molecular , Microalgas/parasitologia , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
4.
J Phys Chem B ; 113(30): 10277-84, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19580296

RESUMO

Solvent dynamics effects on electroreduction of peroxodisulphate anion on mercury electrode (a typical bond breaking electron transfer reaction) are explored in the framework of the Sumi-Marcus model. The reaction three-dimensional free energy surface is constructed using the Anderson model Hamiltonian. A new interpretation of short- and long-time survival times is presented as well. Since the reduction is assumed to proceed from aqueous sucrose and glucose solutions of different concentrations (which are used to vary the solution viscosity), unavoidable changes in the Pekar factor (static effect) are also taken into account. The results of model calculations are employed to interpret challenging experimental data on nonmonotonous constant rate vs solution viscosity dependence reported earlier (in part, appearance of an ascent plot). The influence of mixed solvent composition on the reaction rate and transfer coefficient is explained in terms of the saddle point avoidance in the vicinity of activationless discharge. Splitting of the reaction coordinates into slow (solvent) and fast (intramolecular) ones is argued to be crucial, as the most important reaction features cannot be described by means of more simplified models, even if both static and dynamic effects are addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA