Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 6: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904901

RESUMO

Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an 'anaerobic pathogen,' G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.

2.
Bioorg Med Chem ; 21(17): 5503-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810423

RESUMO

Self-assembled peptide based nanostructures gained enough popularity due to their easy biocompatibility and numerous potential applications. An excellent model of self-assembly of hydroxyethylamine based peptide nanostructures was synthesized and characterized by DLS and TEM. Spherical nano structures of I and III were observed with particle size ∼50 and ∼80nm, respectively. Further, I and III were screened against anti-malarial target, falcipain-3 (FP3), a crucial cysteine protease involved as a major hemoglobinase of Plasmodium falciparum. Interestingly, compound III completely inhibited the activity of FP3. The effective concentration (1.5µM) of III found to be more potent than I. This biochemical result was substantiated by molecular-docking studies indicating III to be best inhibitor of FP3. This is the first report showing that bis hydroxethylamine based peptide nanostructures could be very effective inhibitor of malarial cysteine proteases.


Assuntos
Aminas/química , Antimaláricos/química , Cisteína Endopeptidases/química , Nanoestruturas/química , Peptídeos/química , Plasmodium falciparum/enzimologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Antimaláricos/síntese química , Antimaláricos/farmacologia , Sítios de Ligação , Domínio Catalítico , Cisteína Endopeptidases/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA