Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15875, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741917

RESUMO

Foundation plays a vital role in weight transfer from the superstructure to substructure. However, foundation characteristics such as pile group, piled raft, and footing remain unfolded due to their highly non-linear behaviour in different soil types. Bibliography analysis using VOSvierwer algorithm supported the significance of the research. Hence, this study investigates the load-bearing capacity of different types of foundations, including footings, pile groups, and piled rafts, by analyzing experimental data using finite element tools such as PLAXIS 2D and GEO5. The analysis involves examining the impact of various factors such as the influence of surcharge and the effect of different soil types on the load-bearing capabilities of the different types of foundation. For footing, parametric investigations using PLAXIS 2D are conducted to explore deformational changes. Pile groups are analyzed using GEO5 to assess their factor of safety (FOS.) and settling under various criteria, such as pile length and soil type. The study also provides insight into selecting the right type of foundation for civil engineering practice. Findings showed that different soil types have varying deformational behaviours under high loads with sandy soil having less horizontal deformation than clayey soil. Also, it was observed that increasing the pile thickness by 50% resulted in a reduction of 13.88% in settlement and an improvement of 16.66% in the FOS. In conclusion, this study highlights the importance of professionalism, exceptional talent, and outstanding decision-making when assessing the load-bearing capabilities of various foundation types for building structures.

2.
J Environ Manage ; 309: 114711, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182982

RESUMO

Heavy metals (HMs) such as Lead (Pb) have played a vital role in increasing the sediments of the Australian bay's ecosystem. Several meteorological parameters (i.e., minimum, maximum and average temperature (Tmin, Tmax and TavgoC), rainfall (Rn mm) and their interactions with the other batch HMs, are hypothesized to have high impact for the decision-making strategies to minimize the impacts of Pb. Three feature selection (FS) algorithms namely the Boruta method, genetic algorithm (GA) and extreme gradient boosting (XGBoost) were investigated to select the highly important predictors for Pb concentration in the coastal bay sediments of Australia. These FS algorithms were statistically evaluated using principal component analysis (PCA) Biplot along with the correlation metrics describing the statistical characteristics that exist in the input and output parameter space of the models. To ensure a high accuracy attained by the applied predictive artificial intelligence (AI) models i.e., XGBoost, support vector machine (SVM) and random forest (RF), an auto-hyper-parameter tuning process using a Grid-search approach was also implemented. Cu, Ni, Ce, and Fe were selected by all the three applied FS algorithms whereas the Tavg and Rn inputs remained the essential parameters identified by GA and Boruta. The order of the FS outcome was XGBoost > GA > Boruta based on the applied statistical examination and the PCA Biplot results and the order of applied AI predictive models was XGBoost-SVM > GA-SVM > Boruta-SVM, where the SVM model remained at the top performance among the other statistical metrics. Based on the Taylor diagram for model evaluation, the RF model was reflected only marginally different so overall, the proposed integrative AI model provided an evidence a robust and reliable predictive technique used for coastal sediment Pb prediction.


Assuntos
Inteligência Artificial , Chumbo , Algoritmos , Austrália , Ecossistema , Máquina de Vetores de Suporte
3.
Mar Pollut Bull ; 170: 112639, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34273614

RESUMO

Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.


Assuntos
Inteligência Artificial , Água , Oxigênio , Tecnologia de Sensoriamento Remoto , Reprodutibilidade dos Testes
4.
Chemosphere ; 276: 130162, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088083

RESUMO

Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.


Assuntos
Inteligência Artificial , Cobre , Adsorção , Íons , Compostos de Magnésio , Compostos de Silício
5.
Environ Sci Pollut Res Int ; 28(24): 31670-31688, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33611749

RESUMO

This study investigates the performance of support vector machine (SVM), multivariate adaptive regression spline (MARS), and random forest (RF) models for predicting the lead (Pb) adsorption by attapulgite clay. Models are constructed using batch stochastic data of heavy metal (HM) concentrations under different physicochemical conditions. Implementation of auto-hyper-parameter tuning using grid-search approach and comparative analysis is performed against the benchmark artificial intelligence (AI) models. Models are constructed based on Pb concentration (IC), the dosage of attapulgite clay (dose), contact time (CT), pH, and NaNO3 (SN). Principle component analysis (PCA) and correlation analysis (CA) methods are integrated to assess the importance of the applied predictors and their relationship with the target. Research findings approved the potential of the grid-RF model as a marginal superior predictive model against the grid-SVM in terms of MAE, i.e., 3.29 and 3.34, respectively; moreover, the md scored the same, i.e., 0.93, which reveals the potential predictability for both. Nonetheless, grid-MARS and standalone MARS models remained likewise in their predictability. IC parameter demonstrated the highest influential among all the predictors with the highest value of importance in the case of all three evaluators. The solution pH and dose stands together with marginal differences in case of PCA method; however, solution pH and CT appeared with similarity impact using the PCA method.


Assuntos
Inteligência Artificial , Chumbo , Adsorção , Argila , Estudos de Viabilidade , Inteligência , Compostos de Magnésio , Compostos de Silício
6.
Environ Pollut ; 268(Pt B): 115663, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120144

RESUMO

Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.


Assuntos
Inteligência Artificial , Metais Pesados , Austrália , Baías , Redes Neurais de Computação
7.
Ecotoxicol Environ Saf ; 204: 111059, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32791357

RESUMO

Exploring the Manganese (Mn) removal prediction with several independent variables is tremendously critical and indispensable to understand the pattern of removal process. Mn is one of the key heavy metals (HMs) stipulated by the WHO for the development of many attributes of the ecosystem in controlled quantity. In the present paper, an extreme gradient model (XGBoost) is proposed for Mn prediction. A compressive statistical analysis reveals the stochastics behaviour of the data prior to the prediction investigation. The main goal is to determine the Mn predictability of XGBoost algorithm with influencing factors such as D2EHPA (M), Time (min), H2SO4 (M), NaCl (g/L), and EDTA (mM). The PCA biplot signifies the importance of the predictors. The XGBoost model validated against a diversity of data-driven models such as multilinear regression (MLR), support vector machine (SVM), and random forest (RF). The order of the applied models' performance are XGBoost > RF > SVM > MLR as per their R2 and RMSE metrics over testing phase i.e. 20.88, 0.75, 0.61, 0.40, and 2.23, 3.01, 3.51, 6.38, respectively. Moreover, the Taylor diagram and Radar chart have drown to emphasize the XGBoost model efficiency, stability, and reliability. In respect of XGBoost model prediction, 'Time' predictor outperforms D2EHPA, EDTA, H2SO4, and NaCl predictors in order.


Assuntos
Água Doce/química , Manganês/análise , Modelos Teóricos , Máquina de Vetores de Suporte , Poluentes Químicos da Água/análise , Algoritmos , Ecossistema , Previsões , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA