Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4119, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374338

RESUMO

The oral cavity is the portal of entry for many microorganisms that affect swine, and the swine oral fluid has been used as a specimen for the diagnosis of several infectious diseases. The oral microbiota has been shown to play important roles in humans, such as protection against non-indigenous bacteria. In swine, studies that have investigated the microbial composition of the oral cavity of pigs are scarce. This study aimed to characterize the oral fluid microbiota of weaned pigs from five commercial farms in Brazil and compare it to their respective fecal and environmental microbiotas. Bacterial compositions were determined by 16S rRNA gene sequencing and analyzed in R Studio. Oral fluid samples were significantly less diverse (alpha diversity) than pen floor and fecal samples (P < 0.01). Alpha diversity changed among farms in oral fluid and pen floor samples, but no differences were observed in fecal samples. Permutational ANOVA revealed that beta diversity was significantly different among sample types (P = 0.001) and farms (P = 0.001), with separation of sample types (feces, pen floor, and oral fluid) on the principal coordinates analysis. Most counts obtained from oral fluid samples were classified as Firmicutes (80.4%) and Proteobacteria (7.7%). The genera Streptococcus, members of the Pasteurellaceae family, and Veillonella were differentially abundant in oral fluid samples when compared to fecal samples, in which Streptococcus was identified as a core genus that was strongly correlated (SparCC) with other taxa. Firmicutes and Bacteroidota were the most relatively abundant phyla identified in fecal and pen floor samples, and Prevotella_9 was the most classified genus. No differentially abundant taxa were identified when comparing fecal samples and pen floor samples. We concluded that under the conditions of our study, the oral fluid microbiota of weaned piglets is different (beta diversity) and less diverse (alpha diversity) than the fecal and environmental microbiotas. Several differentially abundant taxa were identified in the oral fluid samples, and some have been described as important colonizers of the oral cavity in human microbiome studies. Further understanding of the relationship between the oral fluid microbiota and swine is necessary and would create opportunities for the development of innovative solutions that target the microbiota to improve swine health and production.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Humanos , RNA Ribossômico 16S/genética , Habitação , Bactérias/genética , Fezes/microbiologia , Firmicutes/genética
2.
Mamm Genome ; 34(1): 90-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463529

RESUMO

Feed-efficient cattle selection is among the most leading solutions to reduce cost for beef cattle production. However, technical difficulties in measuring feed efficiency traits had limited the application in livestock. Here, we performed a Bivariate Genome-Wide Association Study (Bi-GWAS) and presented candidate biological mechanisms underlying the association between feed efficiency and meat quality traits in a half-sibling design with 353 Nelore steers derived from 34 unrelated sires. A total of 13 Quantitative Trait Loci (QTL) were found explaining part of the phenotypic variations. An important transcription factor of adipogenesis in cattle, the TAL1 (rs133408775) gene located on BTA3 was associated with intramuscular fat and average daily gain (IMF-ADG), and a region located on BTA20, close to CD180 and MAST4 genes, both related to fat accumulation. We observed a low positive genetic correlation between IMF-ADG (r = 0.30 ± 0.0686), indicating that it may respond to selection in the same direction. Our findings contributed to clarifying the pleiotropic modulation of the complex traits, indicating new QTLs for bovine genetic improvement.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Bovinos , Animais , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Regulação da Expressão Gênica , Carne , Polimorfismo de Nucleotídeo Único
3.
Front Microbiol ; 13: 966436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532494

RESUMO

The São Francisco River (SFR), one of the main Brazilian rivers, has suffered cumulative anthropogenic impacts, leading to ever-decreasing fish stocks and environmental, economic, and social consequences. Rhinelepis aspera and Prochilodus argenteus are medium-sized, bottom-feeding, and rheophilic fishes from the SFR that suffer from these actions. Both species are targeted for spawning and restocking operations due to their relevance in artisanal fisheries, commercial activities, and conservation concerns. Using high-throughput sequencing of the 16S rRNA gene, we characterized the microbiome present in the gills and guts of these species recruited from an impacted SFR region and hatchery tanks (HT). Our results showed that bacterial diversity from the gill and gut at the genera level in both fish species from HT is 87% smaller than in species from the SFR. Furthermore, only 15 and 29% of bacterial genera are shared between gills and guts in R. aspera and P. argenteus from SFR, respectively, showing an intimate relationship between functional differences in organs. In both species from SFR, pathogenic, xenobiont-degrading, and cyanotoxin-producer bacterial genera were found, indicating the critical pollution scenario in which the river finds itself. This study allowed us to conclude that the conditions imposed on fish in the HT act as important modulators of microbial diversity in the analyzed tissues. It also raises questions regarding the effects of these conditions on hatchery spawn fish and their suitability for restocking activities, aggravated by the narrow genetic diversity associated with such freshwater systems.

4.
Mamm Genome ; 33(4): 629-641, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840822

RESUMO

Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.


Assuntos
Ração Animal , Ingestão de Alimentos , Bovinos/genética , Animais , Ingestão de Alimentos/genética , Fenótipo , Ração Animal/análise , Peso Corporal/genética , Expressão Gênica
5.
Sci Rep ; 10(1): 10204, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576896

RESUMO

Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica/genética , Músculo Esquelético/fisiologia , Alelos , Animais , Genoma/genética , Genômica/métodos , Genótipo , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Transcriptoma/genética
6.
Sci Rep ; 9(1): 12715, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481722

RESUMO

Mineral content affects the biological processes underlying beef quality. Muscle mineral concentration depends not only on intake-outtake balance and muscle type, but also on age, environment, breed, and genetic factors. To unveil the genetic factors involved in muscle mineral concentration, we applied a pairwise differential gene expression analysis in groups of Nelore steers genetically divergent for nine different mineral concentrations. Here, based on significant expression differences between contrasting groups, we presented candidate genes for the genetic regulation of mineral concentration in muscle. Functional enrichment and protein-protein interaction network analyses were carried out to search for gene regulatory processes concerning each mineral. The core genetic regulation for all minerals studied, except Zn, seems to rest on interactions between components of the extracellular matrix. Regulation of adipogenesis-related pathways was also significant in our results. Antagonistic patterns of gene expression for fatty acid metabolism-related genes may explain the Cu and Zn antagonistic effect on fatty acid accumulation. Our results shed light on the role of these minerals on cell function.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Redes e Vias Metabólicas/fisiologia , Minerais/metabolismo , Músculo Esquelético/metabolismo , Animais , Bovinos
7.
Parasit Vectors ; 12(1): 403, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412938

RESUMO

BACKGROUND: Haemonchus contortus, a gastrointestinal nematode parasite of sheep, is mainly controlled by anthelmintics; the occurrence of anthelmintic resistance leads to treatment failures and increases economic burden. Because molecular mechanisms involved in drug resistance can be elucidated by genomic studies, an extreme quantitative trait locus (X-QTL) mapping approach was used to identify co-segregation of the resistance phenotype with genetic markers to detect the genome-wide variants associated with monepantel resistance in H. contortus. METHODS: A cross between H. contortus isolates using parental susceptible (Par-S) males and monepantel resistant (Par-R) females resulted in SR progeny, while reciprocal cross resulted in RS progeny. Pools (n = 30,000) of infective larvae (L3) recovered from Par-R, and from SR and RS populations in the F3 generation, collected both before (unselected group) and 7 days after (selected group) selection with monepantel treatment in sheep hosts, were subjected to genome sequencing (Pool-Seq). Pairwise comparisons of allele frequencies between unselected and selected groups were performed for each population by Fisher's exact test (FET) and for both populations combined by a Cochran-Mantel-Haenszel (CMH) test. RESULTS: Mapping rates varied from 80.29 to 81.77% at a 90.4X mean coverage of aligned reads. After correction for multiple testing, significant (P < 0.05) changes in allele frequencies were detected by FET for 6 and 57 single nucleotide polymorphisms (SNPs) in the SR and RS populations, respectively, and by the CMH test for 124 SNPs in both populations. The significant variants located on chromosome 2 generated a selection signal in a genomic region harboring the mptl-1, deg-3 and des-2 genes, previously reported as candidates for monepantel resistance. In addition, three new variants were identified in the mptl-1 gene. CONCLUSIONS: This study expands knowledge on genome-wide molecular events underlying H. contortus resistance to monepantel. The identification of a genome region harboring major genes previously associated with monepantel resistance supports the results of the employed X-QTL approach. In addition, a deletion in exon 11 of the mptl-1 gene should be further investigated as the putative causal mutation leading to monepantel resistance.


Assuntos
Aminoacetonitrila/análogos & derivados , Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genética , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Locos de Características Quantitativas , Aminoacetonitrila/farmacologia , Animais , Feminino , Variação Genética , Masculino , Mutação , Fenótipo
8.
Sci Rep ; 8(1): 1399, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362391

RESUMO

Copy number variation (CNV) is a frequently observed deviation from the diploid state due to duplication or deletion of genomic regions. Although intensively analyzed for association with diseases and production traits, the specific mechanisms and extent by which such variations affect the phenotype are incompletely understood. We present an integrative study on CNV and genome-wide gene expression in Brazilian Bos indicus cattle. We analyzed CNVs inferred from SNP-chip data for effects on gene expression measured with RNA-seq in skeletal muscle samples of 183 steers. Local effects, where expression changes coincided with CNVs in the respective genes, were restricted to immune genes. Distal effects were attributable to several high-impact CNVs that modulated remote expression in an orchestrated and intertwined fashion. These CNVs were located in the vicinity of major skeletal muscle pathway regulators and associated genes were enriched for proteolysis, autophagy, and muscle structure development. From association analysis between CNVs and several meat quality and production traits, we found CNV-associated expression effects to also manifest at the phenotype level. Based on genome sequences of the population founders, we further demonstrate that CNVs with impact on expression and phenotype are passed on from one generation to another.


Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Músculo Esquelético/química , Animais , Bovinos , Regulação da Expressão Gênica , Fenótipo , Locos de Características Quantitativas , Análise de Sequência de RNA/métodos
9.
PLoS One ; 11(8): e0161160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532424

RESUMO

Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.


Assuntos
Ferro/análise , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Músculo Esquelético/metabolismo , Carne Vermelha/análise , Animais , Bovinos , Cobre/análise , Ácido Graxo Sintase Tipo I/genética , Proteínas de Ligação a Ácido Graxo/genética , Expressão Gênica , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Manganês/análise , RNA/biossíntese , Transdução de Sinais , Fatores de Transcrição/genética , Zinco/análise
10.
Meat Sci ; 96(1): 436-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23995697

RESUMO

Calcium (Ca) and potassium (K) are essential nutrients in animal nutrition. Furthermore, the Ca content can influence meat tenderness because it is needed by the proteolytic system of calpains and calpastatins, major factors in postmortem tenderization of skeletal muscles. K content, which is needed for muscle contraction, can also affect meat tenderness. This study showed that K positively affects the Warner-Bratzler shear force (WBSF), measured at 14days of meat aging, which means that higher levels of K are related to lower meat tenderness. Additionally, a significant effect (P≤0.015) of a SNP in the calcium-activated neutral protease 1 (CAPN1) gene on Ca content was observed. Metal content in beef can affect not only nutritional values but also meat quality traits. Part of this effect may be related to variation in specific genes.


Assuntos
Cálcio/análise , Carne/análise , Potássio/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Bovinos , Manipulação de Alimentos , Variação Genética , Genótipo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...