Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Dent ; : 105057, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729290

RESUMO

OBJECTIVES: This study focuses on artificial intelligence (AI)-assisted analysis of alveolar bone for periodontitis in a mouse model with the aim to create an automatic deep-learning segmentation model that enables researchers to easily examine alveolar bone from micro-computed tomography (µCT) data without needing prior machine learning knowledge. METHODS: Ligature-induced experimental periodontitis was produced by placing a small-diameter silk sling ligature around the left maxillary second molar. At 4, 7, 9, or 14 days, the maxillary bone was harvested and processed with a µCT scanner (µCT-45, Scanco). Using Dragonfly (v2021.3), we developed a 3D deep learning model based on the U-Net AI deep learning engine for segmenting materials in complex images to measure alveolar bone volume (BV) and bone mineral density (BMD) while excluding the teeth from the measurements. RESULTS: This model generates 3D segmentation output for a selected region of interest with over 98% accuracy on different formats of µCT data. BV on the ligature side gradually decreased from 0.87 mm3 to 0.50 mm3 on day 9 and then increased to 0.63 mm3 on day 14. The ligature side lost 4.6% of BMD on day 4, 9.6% on day 7, 17.7% on day 9, and 21.1% on day 14. CONCLUSIONS: This study developed an AI model that can be downloaded and easily applied, allowing researchers to assess metrics including BV, BMD, and trabecular bone thickness, while excluding teeth from the measurements of mouse alveolar bone. CLINICAL SIGNIFICANCE: This work offers an innovative, user-friendly automatic segmentation model that is fast, accurate, and reliable, demonstrating new potential uses of artificial intelligence (AI) in dentistry with great potential in diagnosing, treating, and prognosis of oral diseases.

2.
J Neurosci ; 43(47): 7958-7966, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37813571

RESUMO

In the mammalian nose, two chemosensory systems, the trigeminal and the olfactory mediate the detection of volatile chemicals. Most odorants are able to activate the trigeminal system, and vice versa, most trigeminal agonists activate the olfactory system as well. Although these two systems constitute two separate sensory modalities, trigeminal activation modulates the neural representation of an odor. The mechanisms behind the modulation of olfactory response by trigeminal activation are still poorly understood. We addressed this question by looking at the olfactory epithelium (OE), where olfactory sensory neurons (OSNs) and trigeminal sensory fibers co-localize and where the olfactory signal is generated. Our study was conducted in a mouse model. Both sexes, males and females, were included. We characterize the trigeminal activation in response to five different odorants by measuring intracellular Ca2+ changes from primary cultures of trigeminal neurons (TGNs). We also measured responses from mice lacking TRPA1 and TRPV1 channels known to mediate some trigeminal responses. Next, we tested how trigeminal activation affects the olfactory response in the olfactory epithelium using electro-olfactogram (EOG) recordings from wild-type (WT) and TRPA1/V1-knock out (KO) mice. The trigeminal modulation of the olfactory response was determined by measuring responses to the odorant, 2-phenylethanol (PEA), an odorant with little trigeminal potency after stimulation with a trigeminal agonist. Trigeminal agonists induced a decrease in the EOG response to PEA, which depended on the level of TRPA1 and TRPV1 activation induced by the trigeminal agonist. This suggests that trigeminal activation can alter odorant responses even at the earliest stage of the olfactory sensory transduction.SIGNIFICANCE STATEMENT Most odorants reaching the olfactory epithelium (OE) can simultaneously activate olfactory and trigeminal systems. Although these two systems constitute two separate sensory modalities, trigeminal activation can alter odor perception. Here, we analyzed the trigeminal activity induced by different odorants proposing an objective quantification of their trigeminal potency independent from human perception. We show that trigeminal activation by odorants reduces the olfactory response in the olfactory epithelium and that such modulation correlates with the trigeminal potency of the trigeminal agonist. These results show that the trigeminal system impacts the olfactory response from its earliest stage.


Assuntos
Neurônios Receptores Olfatórios , Álcool Feniletílico , Masculino , Humanos , Feminino , Camundongos , Animais , Olfato/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Mucosa Olfatória , Odorantes , Camundongos Knockout , Álcool Feniletílico/farmacologia , Mamíferos
3.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941059

RESUMO

The nasal epithelium houses a population of solitary chemosensory cells (SCCs). SCCs express bitter taste receptors and taste transduction signaling components and are innervated by peptidergic trigeminal polymodal nociceptive nerve fibers. Thus, nasal SCCs respond to bitter compounds, including bacterial metabolites, and these reactions evoke protective respiratory reflexes and innate immune and inflammatory responses. We tested whether SCCs are implicated in aversive behavior to specific inhaled nebulized irritants using a custom-built dual-chamber forced-choice device. The behavior of mice was recorded and analyzed for the time spent in each chamber. Wild-type (WT) mice exhibited an aversion to 10 mm denatonium benzoate (Den) or cycloheximide and spent more time in the control (saline) chamber. The SCC-pathway knock-out (KO) mice did not exhibit such an aversion response. The bitter avoidance behavior of WT mice was positively correlated with the concentration increase of Den and the number of exposures. Bitter-ageusic P2X2/3 double KO mice similarly showed an avoidance response to nebulized Den, excluding the taste system's involvement and pointing to an SCC-mediated major contributor to the aversive response. Interestingly, SCC-pathway KO mice showed an attraction to higher Den concentrations; however, chemical ablation of the olfactory epithelium eliminated this attraction attributed to the smell of Den. These results demonstrate that activation of SCCs leads to a rapid aversive response to certain classes of irritants with olfaction, but not gustation, contributing to the avoidance behavior during subsequent irritant exposures. This SCC-mediated avoidance behavior represents an important defense mechanism against the inhalation of noxious chemicals.


Assuntos
Irritantes , Canais de Cátion TRPM , Camundongos , Animais , Irritantes/metabolismo , Aprendizagem da Esquiva , Células Quimiorreceptoras/fisiologia , Canais de Cátion TRPM/metabolismo , Transdução de Sinais
4.
J Wildl Dis ; 59(2): 363-366, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989512

RESUMO

Fibropapillomatosis is a debilitating neoplastic disease associated with Chelonid alphaherpesvirus 5 (ChHV5) infection. We detected the Atlantic variant of ChHV5 associated with a fibropapilloma in a green turtle (Chelonia mydas) found stranded on the western coast of Rio de la Plata, Argentina. This is the southernmost registered case for the southwestern Atlantic.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Herpesviridae , Neoplasias Cutâneas , Tartarugas , Animais , Neoplasias Cutâneas/veterinária , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária
5.
Front Cell Infect Microbiol ; 12: 802504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425718

RESUMO

Taste receptors, originally identified in taste buds, function as the periphery receptors for taste stimuli and play an important role in food choice. Cohort studies have revealed that single nucleotide polymorphisms of taste receptors such as T1R1, T1R2, T2R38 are associated with susceptibility to oral diseases like dental caries. Recent studies have demonstrated the wide expression of taste receptors in various tissues, including intestinal epithelia, respiratory tract, and gingiva, with an emerging role of participating in the interaction between mucosa surface and microorganisms via monitoring a wide range of metabolites. On the one hand, individuals with different oral microbiomes exhibited varied taste sensitivity, suggesting a potential impact of the oral microbiota composition on taste receptor function. On the other hand, animal studies and in vitro studies have uncovered that a variety of oral cells expressing taste receptors such as gingival solitary chemosensory cells, gingival epithelial cells (GECs), and gingival fibroblasts can detect bacterial signals through bitter taste receptors to trigger host innate immune responses, thus regulating oral microbial homeostasis. This review focuses on how taste receptors, particularly bitter and sweet taste receptors, mediate the oral microbiota-host interaction as well as impact the occurrence and development of oral diseases. Further studies delineating the role of taste receptors in mediating oral microbiota-host interaction will advance our knowledge in oral ecological homeostasis establishment, providing a novel paradigm and treatment target for the better management of dental infectious diseases.


Assuntos
Cárie Dentária , Papilas Gustativas , Animais , Interações entre Hospedeiro e Microrganismos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Paladar
6.
Rev. argent. microbiol ; 54(1): 31-40, mar. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407164

RESUMO

Abstract Rhinosporidiosis is caused by Rhinosporidium seeberi, a parasitic organism of the family Rhinosporideacea family, class Micomycetozoa. The disease is endemic in India; however, some cases were reported in Europe, Africa, North America, and South America. The aim of the present study is to report three cases of rhinosporidiosis in wild horses in different cities of Buenos Aires province, Argentina. We confirm the presence of R. seeberi in the analyzed samples using histopathological and PCR sequencing techniques.


Resumen La rinosporidiosis es una enfermedad causada por Rhinosporidium seeberi, un organismo parasitario clasificado en la familia Rhinosporideacea, clase Micomycetozoa. Es una enfermedad endémica de la India, pero se notificaron algunos casos en Europa, África, América del Norte y América del Sur. El objetivo del presente estudio fue describir tres casos de rinosporidiosis en caballos de vida libre en diferentes ciudades de la provincia de Buenos Ares, Argentina. Confirmamos la presencia de R. seeberi en las muestras analizadas utilizando técnicas histopatológicas, PCR y secuenciación.

7.
Rev Argent Microbiol ; 54(1): 22-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33867193

RESUMO

Rhinosporidiosis is caused by Rhinosporidium seeberi, a parasitic organism of the family Rhinosporideacea family, class Micomycetozoa. The disease is endemic in India; however, some cases were reported in Europe, Africa, North America, and South America. The aim of the present study is to report three cases of rhinosporidiosis in wild horses in different cities of Buenos Aires province, Argentina. We confirm the presence of R. seeberi in the analyzed samples using histopathological and PCR sequencing techniques.


Assuntos
Rinosporidiose , Animais , Argentina/epidemiologia , Cidades , Cavalos , Rinosporidiose/diagnóstico , Rinosporidiose/epidemiologia , Rinosporidiose/veterinária , Rhinosporidium , América do Sul
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290141

RESUMO

"Taste-like" tuft cells in the intestine trigger type 2 immunity in response to worm infection. The secretion of interleukin-13 (IL-13) from type 2 innate lymphoid cells (ILC2) represents a key step in the tuft cell-ILC2 cell-intestinal epithelial cell circuit that drives the clearance of worms from the gut via type 2 immune responses. Hallmark features of type 2 responses include tissue remodeling, such as tuft and goblet cell expansion, and villus atrophy, yet it remains unclear if additional molecular changes in the gut epithelium facilitate the clearance of worms from the gut. Using gut organoids, we demonstrated that IL-4 and IL-13, two type 2 cytokines with similar functions, not only induced the classical type 2 responses (e.g., tuft cell expansion) but also drastically up-regulated the expression of gasdermin C genes (Gsdmcs). Using an in vivo worm-induced type 2 immunity model, we confirmed the up-regulation of Gsdmcs in Nippostrongylus brasiliensis-infected wild-type C57BL/6 mice. Consistent with gasdermin family members being principal effectors of pyroptosis, overexpression of Gsdmc2 in human embryonic kidney 293 (HEK293) cells triggered pyroptosis and lytic cell death. Moreover, in intestinal organoids treated with IL-4 or IL-13, or in wild-type mice infected with N. brasiliensis, lytic cell death increased, which may account for villus atrophy observed in worm-infected mice. Thus, we propose that the up-regulated Gsdmc family may be major effectors for type 2 responses in the gut and that Gsdmc-mediated pyroptosis may provide a conduit for the release of antiparasitic factors from enterocytes to facilitate the clearance of worms.


Assuntos
Morte Celular , Proteínas de Ligação a DNA/metabolismo , Enterócitos/patologia , Imunidade Inata/imunologia , Intestino Delgado/patologia , Infecções por Strongylida/complicações , Células Th2/imunologia , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Enterócitos/imunologia , Enterócitos/metabolismo , Enterócitos/parasitologia , Feminino , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nippostrongylus/fisiologia , Transdução de Sinais , Infecções por Strongylida/imunologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/parasitologia
9.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33855345

RESUMO

We have characterized a recently rediscovered chemosensory structure at the rear of the mandibular mucosa in the mouse oral cavity originally reported in the 1980s. This consists of unorganized taste buds, not contained within troughs, associated with the ducts of an underlying minor salivary gland. Using whole-mount preparations of transgenic mice expressing green fluorescent protein under the promoter of taste-signaling-specific genes, we determined that the structure contains taste bud clusters and salivary gland orifices at the rear of each mandible, distal to the last molar and anterior to the ascending ramus. Immunohistochemical analysis shows in the retromolar taste buds expression of the taste receptors Tas2R131 and T1R3 and taste cascade molecules TrpM5, PLCß2, and GNAT3, consistent with type II taste cells, and expression of GAD1, consistent with type III taste cells. Furthermore, the neuronal marker, calcitonin gene-related peptide, in retromolar mucosa tissue wrapping around TrpM5+ taste buds was observed. RT-PCR showed that retromolar taste buds express all 3 mouse tas1r genes, 28 of the 35 tas2r genes, and taste transduction signaling genes gnat3, plcb2, and trpm5, making the retromolar taste buds similar to other lingual and palate taste buds. Finally, histochemistry demonstrated that the mandibular retromolar secretory gland is a minor salivary gland of mucous type. The mandibular retromolar taste structure may thus play a role in taste sensation and represent a potential novel pharmacological target for taste disorders.


Assuntos
Mandíbula/metabolismo , Muco/metabolismo , Glândulas Salivares/metabolismo , Papilas Gustativas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
10.
Reprod Domest Anim ; 55(11): 1660-1664, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047395

RESUMO

The aim of the present study was to compare the endometrial gene expression of epidermal growth factor receptor (EGFR), nodal growth differentiation factor (NODAL), prostaglandin-endoperoxide synthase 2 (PTGS2), oestrogen receptor 1 (ESR1) and progesterone receptor (PGR) in repeat breeder cows (RBC) and non-RBC during diestrus. Endometrial samples were collected by cytobrush technique and stored in RNA stabilizing solution at -20°C until RT-qPCR analysis. Differences in endometrial mRNA expression of selected genes were assessed by ANOVA and simple (r) and the partial correlations (rp) among selected genes were performed. Results demonstrated that mRNA expression of EGFR and NODAL were higher in RBC than in non-RBC (3 and 25-fold change, p < .01 and p < .01, respectively), while the mRNA expression of PTGS2 was lower (1.56-fold change, p < .01). Although there were no differences detected in the mRNA expression of ESR1 and PGR, there was a positive correlation between the expression of ESR1 and EGFR (0.84, p < .05) and a negative correlation between PGR and PTGS2 (-0.49, p < .05). In conclusion, the difference on the endometrial mRNA expression of the genes included in the study between RBC and non-RBC indicates a deregulation of important mechanisms that are vital to establish a successful pregnancy. Thus, the present study provides useful insight as a base for future studies to elucidate the causes of RBC.


Assuntos
Bovinos/metabolismo , Endométrio/metabolismo , Regulação da Expressão Gênica , Animais , Bovinos/genética , Diestro , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Fertilidade/genética , Proteína Nodal/genética , Proteína Nodal/metabolismo , Gravidez , RNA Mensageiro
11.
Nat Commun ; 10(1): 4496, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582750

RESUMO

Solitary chemosensory cells (SCCs) are epithelial sentinels that utilize bitter Tas2r receptors and coupled taste transduction elements to detect pathogenic bacterial metabolites, triggering host defenses to control the infection. Here we report that SCCs are present in mouse gingival junctional epithelium, where they express several Tas2rs and the taste signaling components α-gustducin (Gnat3), TrpM5, and Plcß2. Gnat3-/- mice have altered commensal oral microbiota and accelerated naturally occurring alveolar bone loss. In ligature-induced periodontitis, knockout of taste signaling molecules or genetic absence of gingival SCCs (gSCCs) increases the bacterial load, reduces bacterial diversity, and renders the microbiota more pathogenic, leading to greater alveolar bone loss. Topical treatment with bitter denatonium to activate gSCCs upregulates the expression of antimicrobial peptides and ameliorates ligature-induced periodontitis in wild-type but not in Gnat3-/- mice. We conclude that gSCCs may provide a promising target for treating periodontitis by harnessing innate immunity to regulate the oral microbiome.


Assuntos
Células Quimiorreceptoras/imunologia , Gengiva/imunologia , Imunidade Inata , Microbiota/imunologia , Periodontite/imunologia , Animais , Células Quimiorreceptoras/metabolismo , Modelos Animais de Doenças , Feminino , Gengiva/citologia , Gengiva/microbiologia , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Periodontite/microbiologia , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/imunologia , Canais de Cátion TRPM/metabolismo
12.
PLoS One ; 13(9): e0202754, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212469

RESUMO

The nasal cavity hosts an array of chemoresponsive cells, including the extended olfactory system and several other cells involved in detection of and responses to irritants. Solitary chemosensory cells (SCCs), which respond to irritants and bacteria, express the transient receptor potential channel TRPM5 an essential element of the taste transduction-signaling cascade. Microvillous cells (MVCs), non-neuronal cells situated in the apical layer of the main olfactory epithelium, also express TRPM5, but their function has not yet been clarified. TRPM5-positive MVCs, like SCCs, show a cholinergic phenotype expressing choline acetyl transferase (ChAT), but none of the other elements of the bitter taste transduction cascade could be detected. We reexamined TRPM5-positive MVCs with more sensitive gene expression and staining techniques to clarify whether they rely only on TRPM5 and ChAT or express other elements of the taste/SCC transduction cascade. Analyzing existing RNA sequencing data from whole olfactory mucosa and isolated olfactory sensory neurons, we determined that several elements of the taste/SCC transduction cascade, including taste receptors, are expressed in the olfactory mucosa in cells other than olfactory sensory neurons. Immunostaining confirmed the presence TRPM5 and ChAT in a subset of cells of the olfactory mucosa, which also showed the expression of PLCB2, gustducin, and T1R3. Specifically, these cells were identified as TRPM5-positive MVCs. Furthermore, we examined whether MVCs are innervated by trigeminal fibers, similarly to SCCs. Using antibodies against trigeminal nerve markers calcitonin gene-related peptide and substance P, we determined that, despite the cholinergic phenotype, most MVCs in the olfactory mucosa lacked consistent trigeminal innervation. Our findings indicate that MVCs, like SCCs, express all the elements of the bitter taste transduction cascade but that, unlike SCCs, they possess only sparse trigeminal innervation. The cholinergic phenotype of MVCs suggests a modulatory function of the surrounding olfactory epithelium, through the release of acetylcholine.


Assuntos
Células Quimiorreceptoras/metabolismo , Colina O-Acetiltransferase/genética , Mucosa Olfatória/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/genética , Animais , Biomarcadores/metabolismo , Colina O-Acetiltransferase/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Microvilosidades/metabolismo , Mucosa Olfatória/ultraestrutura , Análise de Sequência de RNA , Canais de Cátion TRPM/metabolismo , Paladar/genética , Nervo Trigêmeo/metabolismo
13.
Chem Senses ; 40(9): 655-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400924

RESUMO

The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCß2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCß2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents.


Assuntos
Papilas Gustativas/metabolismo , Idoso de 80 Anos ou mais , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Fosfolipase C beta/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Papilas Gustativas/patologia , Transducina/metabolismo , Ubiquitina Tiolesterase/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(16): 6075-80, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711432

RESUMO

Solitary chemosensory cells (SCCs) of the nasal cavity are specialized epithelial chemosensors that respond to irritants through the canonical taste transduction cascade involving Gα-gustducin and transient receptor potential melastatin 5. When stimulated, SCCs trigger peptidergic nociceptive (or pain) nerve fibers, causing an alteration of the respiratory rate indicative of trigeminal activation. Direct chemical excitation of trigeminal pain fibers by capsaicin evokes neurogenic inflammation in the surrounding epithelium. In the current study, we test whether activation of nasal SCCs can trigger similar local inflammatory responses, specifically mast cell degranulation and plasma leakage. The prototypical bitter compound, denatonium, a well-established activator of SCCs, caused significant inflammatory responses in WT mice but not mice with a genetic deletion of elements of the canonical taste transduction cascade, showing that activation of taste signaling components is sufficient to trigger local inflammation. Chemical ablation of peptidergic trigeminal fibers prevented the SCC-induced nasal inflammation, indicating that SCCs evoke inflammation only by neural activity and not by release of local inflammatory mediators. Additionally, blocking nicotinic, but not muscarinic, acetylcholine receptors prevents SCC-mediated neurogenic inflammation for both denatonium and the bacterial signaling molecule 3-oxo-C12-homoserine lactone, showing the necessity for cholinergic transmission. Finally, we show that the neurokinin 1 receptor for substance P is required for SCC-mediated inflammation, suggesting that release of substance P from nerve fibers triggers the inflammatory events. Taken together, these results show that SCCs use cholinergic neurotransmission to trigger peptidergic trigeminal nociceptors, which link SCCs to the neurogenic inflammatory pathway.


Assuntos
Células Quimiorreceptoras/patologia , Neurônios Colinérgicos/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Nariz/patologia , Nariz/fisiopatologia , Transmissão Sináptica , Animais , Degranulação Celular , Células Quimiorreceptoras/metabolismo , Extravasamento de Materiais Terapêuticos e Diagnósticos/metabolismo , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/fisiopatologia , Inflamação/metabolismo , Mastócitos/fisiologia , Camundongos , Modelos Biológicos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/fisiopatologia , Nociceptores/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Transducina/metabolismo , Nervo Trigêmeo/metabolismo , Nervo Trigêmeo/patologia
15.
Rev. argent. microbiol ; 45(4): 222-228, Dec. 2013. ilus, tab
Artigo em Inglês | BINACIS | ID: bin-130223

RESUMO

Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20 μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.(AU)


El virus de la influenza equina es una de las principales causas de enfermedad respiratoria en caballos de todo el mundo. La prevención de la enfermedad es a través de la vacunación con vacunas a virus inactivado. La mayoría de las vacunas se producen en huevos embrionados, de los cuales los viriones son cosechados del líquido alantoideo e inactivados químicamente. Aunque este sistema ha servido bien durante años, el uso de huevos como sustrato para la producción de vacuna presenta varias desventajas bien reconocidas (costo, provisión de huevos, manejo de los residuos, rinde por huevo). El objetivo del presente trabajo fue evaluar preliminarmente un sistema de expresión en baculovirus como método de producción de hemoaglutinina recombinante (rHA) para ser utilizada como vacuna para la prevención de la influenza equina. Para ello el ectodominio de la hemaglutinina (la subunidad HA1) del virus de la influenza equina se expresó en células de insecto infectadas con un baculovirus recombinante. La expresión fue demostrada por SDS-PAGE e inmunoblotting. El método empleado fue capaz de producir gran cantidad de rHA1. En este estudio se obtuvieron 20 μg/ml (200 μg de HA1 purificada de 2,5x107 células infectadas). La respuesta inmune fue evaluada mediante la inmunización de ratones BALB/c. Los resultados preliminares demostraron que la proteína recombinante expresada en baculovirus genera una fuerte respuesta inmune en ratones, por lo tanto podría ser utilizada como antígeno para la producción de una vacuna a subunidades y en pruebas diagnósticas.(AU)


Assuntos
Animais , Feminino , Camundongos , Baculoviridae/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/biossíntese , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/biossíntese
16.
Rev. argent. microbiol ; 45(4): 222-228, dic. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-708686

RESUMO

Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20 μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.


El virus de la influenza equina es una de las principales causas de enfermedad respiratoria en caballos de todo el mundo. La prevención de la enfermedad es a través de la vacunación con vacunas a virus inactivado. La mayoría de las vacunas se producen en huevos embrionados, de los cuales los viriones son cosechados del líquido alantoideo e inactivados químicamente. Aunque este sistema ha servido bien durante años, el uso de huevos como sustrato para la producción de vacuna presenta varias desventajas bien reconocidas (costo, provisión de huevos, manejo de los residuos, rinde por huevo). El objetivo del presente trabajo fue evaluar preliminarmente un sistema de expresión en baculovirus como método de producción de hemoaglutinina recombinante (rHA) para ser utilizada como vacuna para la prevención de la influenza equina. Para ello el ectodominio de la hemaglutinina (la subunidad HA1) del virus de la influenza equina se expresó en células de insecto infectadas con un baculovirus recombinante. La expresión fue demostrada por SDS-PAGE e inmunoblotting. El método empleado fue capaz de producir gran cantidad de rHA1. En este estudio se obtuvieron 20 μg/ml (200 μg de HA1 purificada de 2,5x107 células infectadas). La respuesta inmune fue evaluada mediante la inmunización de ratones BALB/c. Los resultados preliminares demostraron que la proteína recombinante expresada en baculovirus genera una fuerte respuesta inmune en ratones, por lo tanto podría ser utilizada como antígeno para la producción de una vacuna a subunidades y en pruebas diagnósticas.


Assuntos
Animais , Feminino , Camundongos , Baculoviridae/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , /imunologia , Vacinas contra Influenza/biossíntese , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/biossíntese
17.
Int Forum Allergy Rhinol ; 3(6): 450-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23404938

RESUMO

BACKGROUND: Solitary chemosensory cells (SCCs) are specialized cells in the respiratory epithelium that respond to noxious chemicals including bacterial signaling molecules. SCCs express components of bitter taste transduction including the taste receptor type 2 (TAS2R) bitter taste receptors and downstream signaling effectors: α-Gustducin, phospholipase Cß2 (PLCß2), and transient receptor potential cation channel subfamily M member 5 (TRPM5). When activated, SCCs evoke neurogenic reflexes, resulting in local inflammation. The purpose of this study was to test for the presence SCCs in human sinonasal epithelium, and to test for a correlation with inflammatory disease processes such as allergic rhinitis and chronic rhinosinusitis. METHODS: Patient demographics and biopsies of human sinonasal mucosa were obtained from control patients (n = 7) and those with allergic rhinitis and/or chronic rhinosinusitis (n = 15). Reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and immunohistochemistry were used to determine whether expression of signaling effectors was altered in diseased patients. RESULTS: RT-PCR demonstrated that bitter taste receptors TAS2R4, TAS2R14, and TAS2R46, and downstream signaling effectors α-Gustducin, PLCß2, and TRPM5 are expressed in the inferior turbinate, middle turbinate, septum, and uncinate of both control and diseased patients. PLCß2/TRPM5-immunoreactive SCCs were identified in the sinonasal mucosa of both control and diseased patients. qPCR showed similar expression of α-Gustducin and TRPM5 in the uncinate process of control and diseased groups, and there was no correlation between level of expression and 22-item Sino-Nasal Outcomes Test (SNOT-22) or pain scores. CONCLUSION: SCCs are present in human sinonasal mucosa in functionally relevant areas. Expression level of signaling effectors was similar in control and diseased patients and did not correlate with measures of pain and inflammation. Further study into these pathways may provide insight into nasal inflammatory diseases and may offer potential therapeutic targets.


Assuntos
Células Quimiorreceptoras/metabolismo , Mucosa Nasal/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Canais de Cátion TRPM/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Doença Crônica , Epitélio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor , Fosfolipase C beta/metabolismo , Reação em Cadeia da Polimerase/métodos , Receptores Acoplados a Proteínas G/metabolismo , Rinite Alérgica , Rinite Alérgica Perene/metabolismo , Transducina/metabolismo
18.
Physiology (Bethesda) ; 28(1): 51-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23280357

RESUMO

The G-protein-coupled receptor molecules and downstream effectors that are used by taste buds to detect sweet, bitter, and savory tastes are also utilized by chemoresponsive cells of the airways to detect irritants. Here, we describe the different cell types in the airways that utilize taste-receptor signaling to trigger protective epithelial and neural responses to potentially dangerous toxins and bacterial infection.


Assuntos
Células Quimiorreceptoras/fisiologia , Nariz/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Comunicação Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia , Papilas Gustativas/fisiologia
19.
Rev Argent Microbiol ; 45(4): 222-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24401775

RESUMO

Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20µg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.


Assuntos
Baculoviridae/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/biossíntese , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/biossíntese
20.
Rev. Argent. Microbiol. ; 45(4): 222-8, 2013 Oct-Dec.
Artigo em Espanhol | BINACIS | ID: bin-132757

RESUMO

Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20Ag/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.


Assuntos
Baculoviridae/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Vírus da Influenza A Subtipo H3N8/imunologia , Vacinas contra Influenza/biossíntese , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...