Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582963

RESUMO

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.

2.
Front Bioeng Biotechnol ; 10: 1033669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440442

RESUMO

TALE base editors are a recent addition to the genome editing toolbox. These molecular tools are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and an uracil glycosylase inhibitor (UGI) that have the distinct ability to directly edit double strand DNA, converting a cytosine (C) to a thymine (T). To dissect the editing rules of TALE-BE, we combined the screening of dozens of TALE-BE targeting nuclear genomic loci with a medium/high throughput strategy based on precise knock-in of TALE-BE target site collections into the cell genome. This latter approach allowed us to gain in depth insight of the editing rules in cellulo, while excluding confounding factors such as epigenetic and microenvironmental differences among different genomic loci. Using the knowledge gained, we designed TALE-BE targeting CD52 and achieved very high frequency of gene knock-out (up to 80% of phenotypic CD52 knock out). We further demonstrated that TALE-BE generate only insignificant levels of Indels and byproducts. Finally, we combined two molecular tools, a TALE-BE and a TALEN, for multiplex genome engineering, generating high levels of double gene knock-out (∼75%) without creation of translocations between the two targeted sites.

3.
FEBS Open Bio ; 12(1): 38-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510816

RESUMO

The development of gene editing technologies over the past years has allowed the precise and efficient insertion of transgenes into the genome of various cell types. Knock-in approaches using homology-directed repair and designer nucleases often rely on viral vectors, which can considerably impact the manufacturing cost and timeline of gene-edited therapeutic products. An attractive alternative would be to use naked DNA as a repair template. However, such a strategy faces challenges such as cytotoxicity from double-stranded DNA (dsDNA) to primary cells. Here, we sought to study the kinetics of transcription activator-like effector nuclease (TALEN)-mediated gene editing in primary T cells to improve nonviral gene knock-in. Harnessing this knowledge, we developed a rapid and efficient gene insertion strategy based on either short single-stranded oligonucleotides or large (2 Kb) linear naked dsDNA sequences. We demonstrated that a time-controlled two-step transfection protocol can substantially improve the efficiency of nonviral transgene integration in primary T cells. Using this approach, we achieved modification of up to ˜ 30% of T cells when inserting a chimeric antigen receptor (CAR) at the T-cell receptor alpha constant region (TRAC) locus to generate 'off-the shelf' CAR-T cells.


Assuntos
Edição de Genes , Linfócitos T , Eletroporação/métodos , Edição de Genes/métodos , Mutagênese Insercional , Linfócitos T/metabolismo , Transfecção
4.
Artigo em Inglês | MEDLINE | ID: mdl-32671047

RESUMO

Here, we developed a straightforward methodology to generate TCRαß negative (allogeneic) cells for CAR-T cell therapies. With an early and transient expression of an anti-CD3 CAR in the engineered donor T cells, we programmed these cells to self-eliminate the TCR+ cell population and obtained an ultrapure TCRαß- population (99-99.9%) at the end of the CAR-T production. This novel and easy-to-implement procedure preserves the production yield and cell fitness and has the potential to streamline the manufacturing of "off-the-shelf" CAR T-cell therapies.

5.
BMC Biotechnol ; 19(1): 44, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269942

RESUMO

BACKGROUND: Engineered therapeutic cells have attracted a great deal of interest due to their potential applications in treating a wide range of diseases, including cancer and autoimmunity. Chimeric antigen receptor (CAR) T-cells are designed to detect and kill tumor cells that present a specific, predefined antigen. The rapid expansion of targeted antigen beyond CD19, has highlighted new challenges, such as autoactivation and T-cell fratricide, that could impact the capacity to manufacture engineered CAR T-cells. Therefore, the development of strategies to control CAR expression at the surface of T-cells and their functions is under intense investigations. RESULTS: Here, we report the development and evaluation of an off-switch directly embedded within a CAR construct (SWIFF-CAR). The incorporation of a self-cleaving degradation moiety controlled by a protease/protease inhibitor pair allowed the ex vivo tight and reversible control of the CAR surface presentation and the subsequent CAR-induced signaling and cytolytic functions of the engineered T-cells using the cell permeable Asunaprevir (ASN) small molecule. CONCLUSIONS: The strategy described in this study could, in principle, be broadly adapted to CAR T-cells development to circumvent some of the possible hurdle of CAR T-cell manufacturing. This system essentially creates a CAR T-cell with an integrated functional rheostat.


Assuntos
Antígenos CD19/imunologia , Expressão Gênica/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos CD19/genética , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Isoquinolinas/farmacologia , Inibidores de Proteases/farmacologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
6.
Animal Model Exp Med ; 1(2): 134-142, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891558

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second in females worldwide in 2012. In the past 20 years, strong evidence suggests that cancer stem cells are the main culprit of cancer metastasis, chemotherapy resistance, and relapse. METHODS: To further understand the unique biological properties of cancer stem cells and uncover novel molecular targets to eradicate them, we first established a panel of patient-derived xenograft (PDX) tumor models using tumors surgically removed from human colorectal cancer patients. We then isolated CRC cancer stem cells based on their ALDH activity using fluorescent-activated cell sorting (FACS) and characterized their metabolic properties. RESULTS: Interestingly, we found that the CRC cancer stem cells (ie, CRC cells with higher ALDH activity, or ALDH+) express higher level of antioxidant genes and have lower level of reactive oxygen species (ROS) than non-CRC cancer stem cells (ie, CRC cells with lower ALDH activity, or ALDH-). The CRC cancer stem cells also possess more mitochondria mass and show higher mitochondrial activity. More intriguingly, we observed higher AMP-activated protein kinase (AMPK) activities in these CRC cancer stem cells. Inhibition of the AMPK activity using 2 AMPK inhibitors, Compound C and Iodotubercidin, preferentially induces cell death in CRC cancer stem cells. CONCLUSION: We propose that AMPK inhibitors may help to eradicate the CRC cancer stem cells and prevent the relapse of CRCs.

7.
Proc Natl Acad Sci U S A ; 113(1): 182-7, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26677873

RESUMO

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Cloridrato de Erlotinib/farmacologia , Técnicas de Inativação de Genes , Humanos , Indóis/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Tolerância a Radiação/genética , Sunitinibe , Enzimas Ativadoras de Ubiquitina/genética
8.
Cell Stress Chaperones ; 15(6): 913-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20717760

RESUMO

Cancer cells are exposed to external and internal stresses by virtue of their unrestrained growth, hostile microenvironment, and increased mutation rate. These stresses impose a burden on protein folding and degradation pathways and suggest a route for therapeutic intervention in cancer. Proteasome and Hsp90 inhibitors are in clinical trials and a 20S proteasome inhibitor, Velcade, is an approved drug. Other points of intervention in the folding and degradation pathway may therefore be of interest. We describe a simple screen for inhibitors of protein synthesis, folding, and proteasomal degradation pathways in this paper. The molecular chaperone-dependent client v-Src was fused to firefly luciferase and expressed in HCT-116 colorectal tumor cells. Both luciferase and protein tyrosine kinase activity were preserved in cells expressing this fusion construct. Exposing these cells to the Hsp90 inhibitor geldanamycin caused a rapid reduction of luciferase and kinase activities and depletion of detergent-soluble v-Src::luciferase fusion protein. Hsp70 knockdown reduced v-Src::luciferase activity and, when combined with geldanamycin, caused a buildup of v-Src::luciferase and ubiquitinated proteins in a detergent-insoluble fraction. Proteasome inhibitors also decreased luciferase activity and caused a buildup of phosphotyrosine-containing proteins in a detergent-insoluble fraction. Protein synthesis inhibitors also reduced luciferase activity, but had less of an effect on phosphotyrosine levels. In contrast, certain histone deacetylase inhibitors increased luciferase and phosphotyrosine activity. A mass screen led to the identification of Hsp90 inhibitors, ubiquitin pathway inhibitors, inhibitors of Hsp70/Hsp40-mediated refolding, and protein synthesis inhibitors. The largest group of compounds identified in the screen increased luciferase activity, and some of these increase v-Src levels and activity. When used in conjunction with appropriate secondary assays, this screen is a powerful cell-based tool for studying compounds that affect protein synthesis, folding, and degradation.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Chaperonas Moleculares/antagonistas & inibidores , Inibidores de Proteassoma , Dobramento de Proteína/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Histona Desacetilases/química , Histona Desacetilases/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Proteína Oncogênica pp60(v-src)/química , Proteína Oncogênica pp60(v-src)/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo
9.
Bioorg Med Chem Lett ; 19(1): 62-6, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19041240

RESUMO

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors. Now we have identified a series of 3-cyanoquinoline compounds that are low nanomolar inhibitors of IGF-1R. The strategies, synthesis, and SAR behind the cyanoquinoline scaffold will be discussed.


Assuntos
Antineoplásicos/síntese química , Nitrilas/síntese química , Quinolinas/síntese química , Receptor IGF Tipo 1/antagonistas & inibidores , Humanos , Nitrilas/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 18(12): 3641-5, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18501599

RESUMO

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. This receptor is over-expressed or activated in tumor cells and is emerging as a novel target in cancer therapy. Efforts in our "Hit to Lead" group have generated a novel series of submicromolar IGF-1R inhibitors based on a isoquinolinedione template originating from a Lance enzyme HTS screen. Chemical triage and parallel synthesis incorporating focused library arrays were instrumental in moving these investigations through the Wyeth exploratory medicinal chemistry process. The strategies, synthesis, and SAR behind this interesting kinase scaffold will be described.


Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Antineoplásicos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...