Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Eng Ethics ; 27(6): 74, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34882277

RESUMO

This paper explores how undergraduate students understood the social relevance of their engineering course content knowledge and drew (or failed to draw) broader social and ethical implications from that knowledge. Based on a three-year qualitative study in a junior-level engineering class, we found that students had difficulty in acknowledging the social and ethical aspects of engineering as relevant topics in their coursework. Many students considered the immediate technical usability or improved efficiency of technical innovations as the noteworthy social and ethical implications of engineering. Findings suggest that highly-structured engineering programs leave little room for undergraduate students to explore the ethical dimension of engineering content knowledge and interact with other students/programs on campus to expand their "technically-minded" perspective. We discussed the issues of the "culture of disengagement" (Cech, Sci Technol Human Values 39(1):42-72, 2014) fueled by disciplinary elitism, spatial distance, and insulated curriculum prevalent in the current structure of engineering programs. We called for more conscious effort by engineering educators to offer meaningful interdisciplinary engagement opportunities and in-class conversations on ethics that support engineering students' holistic intellectual growth and well-rounded professional ethics.


Assuntos
Engenharia , Ética Profissional , Currículo , Humanos , Princípios Morais , Estudantes
2.
PLoS One ; 16(4): e0249586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33819294

RESUMO

Medical procedures that produce aerosolized particles are under great scrutiny due to the recent concerns surrounding the COVID-19 virus and increased risk for nosocomial infections. For example, thoracostomies, tracheotomies and intubations/extubations produce aerosols that can linger in the air. The lingering time is dependent on particle size where, e.g., 500 µm (0.5 mm) particles may quickly fall to the floor, while 1 µm particles may float for extended lengths of time. Here, a method is presented to characterize the size of <40 µm to >600 µm particles resulting from surgery in an operating room (OR). The particles are measured in-situ (next to a patient on an operating table) through a 75mm aperture in a ∼400 mm rectangular enclosure with minimal flow restriction. The particles and gasses exiting a patient are vented through an enclosed laser sheet while a camera captures images of the side-scattered light from the entrained particles. A similar optical configuration was described by Anfinrud et al.; however, we present here an extended method which provides a calibration method for determining particle size. The use of a laser sheet with side-scattered light provides a large FOV and bright image of the particles; however, the particle image dilation caused by scattering does not allow direct measurement of particle size. The calibration routine presented here is accomplished by measuring fixed particle distribution ranges with a calibrated shadow imaging system and mapping these measurements to the in-situ imaging system. The technique used for generating and measuring these particles is described. The result is a three-part process where 1) particles of varying sizes are produced and measured using a calibrated, high-resolution shadow imaging method, 2) the same particle generators are measured with the in-situ imaging system, and 3) a correlation mapping is made between the (dilated) laser image size and the measured particle size. Additionally, experimental and operational details of the imaging system are described such as requirements for the enclosure volume, light management, air filtration and control of various laser reflections. Details related to the OR environment and requirements for achieving close proximity to a patient are discussed as well.


Assuntos
Aerossóis/química , Salas Cirúrgicas/organização & administração , Tamanho da Partícula , COVID-19/prevenção & controle , COVID-19/virologia , Humanos
3.
Sci Rep ; 11(1): 2528, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510369

RESUMO

Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum. The results suggest that collision-induced electron cloud distortion plays a decisive role in single molecule dynamics: (i) electron cloud compression produces short-lived repulsive states and single molecule, self-diffusive hops, while (ii) shear-induced distortion generates viscosity and single-molecule-scale viscous drag. The results provide new insight into nonequilibrium molecular dynamics in nonpolar, nonmetallic liquids.

4.
J Vis Exp ; (130)2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286423

RESUMO

An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.


Assuntos
Gases/química , Líquidos Iônicos/química , Hidrodinâmica
5.
Sci Rep ; 7: 41658, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139711

RESUMO

Experimental evidence and theoretical modeling suggest that piles of confined, high-restitution grains, subject to low-amplitude vibration, can serve as experimentally-accessible analogs for studying a range of liquid-state molecular hydrodynamic processes. Experiments expose single-grain and multiple-grain, collective dynamic features that mimic those either observed or predicted in molecular-scale, liquid state systems, including: (i) near-collision-time-scale hydrodynamic organization of single-molecule dynamics, (ii) nonequilibrium, long-time-scale excitation of collective/hydrodynamic modes, and (iii) long-time-scale emergence of continuum, viscous flow. In order to connect directly observable macroscale granular dynamics to inaccessible and/or indirectly measured molecular hydrodynamic processes, we recast traditional microscale equilibrium and nonequilibrium statistical mechanics for dense, interacting microscale systems into self-consistent, macroscale form. The proposed macroscopic models, which appear to be new with respect to granular physics, and which differ significantly from traditional kinetic-theory-based, macroscale statistical mechanics models, are used to rigorously derive the continuum equations governing viscous, liquid-like granular flow. The models allow physically-consistent interpretation and prediction of observed equilibrium and non-equilibrium, single-grain, and collective, multiple-grain dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA