Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(32): 4200-11, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26725321

RESUMO

The SOCS1 gene coding for suppressor of cytokine signaling 1 is frequently repressed in hepatocellular carcinoma (HCC), and hence SOCS1 is considered a tumor suppressor in the liver. However, the tumor-suppressor mechanisms of SOCS1 are not yet well understood. SOCS1 is known to inhibit pro-inflammatory cytokine production and signaling and to promote activation of the p53 tumor suppressor. However, we observed that SOCS1-deficient mice developed numerous and large liver tumor nodules following treatment with the hepatocarcinogen diethylnitrosamine (DEN) without showing increased interleukin-6 production or activation of p53. On the other hand, the livers of DEN-treated Socs1-null mice showed elevated levels of p21(CIP1/WAF1) protein (p21). Even though p21 generally functions as a tumor suppressor, paradoxically many cancers, including HCC, are known to express elevated levels of p21 that correlate with poor prognosis. We observed elevated p21 expression also in the regenerating livers of SOCS1-deficient mice and in cisplatin-treated Socs1-null hepatocytes, wherein the p21 protein showed increased stability. We show that SOCS1 interacts with p21 and promotes its ubiquitination and proteasomal degradation. Besides, the DEN-treated livers of Socs1-null mice showed increased nuclear and cytosolic p21 staining, and the latter was associated with growth factor-induced, phosphatidylinositol 3-kinase-dependent phosphorylation of p21 in SOCS1-deficient hepatocytes. Cytosolic p21 is often associated with malignancy and chemo-resistance in many cancers. Accordingly, SOCS1-deficient hepatocytes showed increased resistance to apoptosis that was reversed by shRNA-mediated p21 knockdown. In the regenerating livers of Socs1-null mice, increased p21 expression coincided with elevated cyclinD levels. Correspondingly, SOCS1-deficient hepatocytes showed increased proliferation to growth factor stimulation that was reversed by p21 knockdown. Overall, our findings indicate that the tumor-suppressor functions of SOCS1 in the liver could be mediated, at least partly, via regulation of the expression, stability and subcellular distribution of p21 and its paradoxical oncogenic functions, namely, resistance to apoptosis and increased proliferation.


Assuntos
Carcinoma Hepatocelular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Oncogenes , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , DNA/biossíntese , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina/deficiência , Proteína 1 Supressora da Sinalização de Citocina/genética , Fator de Crescimento Transformador alfa/farmacologia
2.
Oncogene ; 34(46): 5718-28, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728680

RESUMO

Suppressor of cytokine signaling 1 (SOCS1) is considered as a tumor suppressor protein in hepatocellular carcinoma (HCC), but the underlying mechanisms remain unclear. Previously, we have shown that SOCS1-deficient hepatocytes displayed increased responsiveness to hepatocyte growth factor (HGF) due to enhanced signaling via the MET receptor tyrosine kinase. As aberrant MET activation occurs in many tumors including HCC, here we elucidated the mechanisms of SOCS1-mediated regulation. SOCS1 attenuated HGF-induced proliferation of human and mouse HCC cell lines and their growth as tumors in NOD.scid.gamma mice. Tumors formed by SOCS1 expressing HCC cells showed significantly reduced MET expression, indicating that SOCS1 not only attenuates MET signaling but also regulates MET expression. Mechanistically, SOCS1 interacted with MET via the Src homology 2 domain and this interaction was promoted by MET tyrosine kinase activity. The SOCS1-mediated reduction in MET expression does not require the juxtamembrane Y1003 residue implicated in Cbl-mediated downmodulation. Moreover, the proteasome inhibitor MG-132, but not the inhibitors of lysosomal degradation bafilomycin and chloroquine, reversed the SOCS1-mediated reduction in MET expression, indicating that this process is distinct from Cbl-mediated downmodulation. Accordingly, SOCS1 promoted polyubiquitination of MET via K48-dependent but not K63-mediated ubiquitin chain elongation. Furthermore, siRNA-mediated downmodulation of Cbl did not abolish SOCS1-mediated reduction in MET expression in HCC cells. SOCS1-dependent ubiquitination of endogenous MET receptor occurred rapidly following HGF stimulation in HCC cells, leading to proteasomal degradation of phosphorylated MET receptor. These findings indicate that SOCS1 mediates its tumor suppressor functions, at least partly, by binding to MET and interfering with downstream signaling pathways as well as by promoting the turnover of the activated MET receptor. We propose that loss of this control mechanism due to epigenetic repression of SOCS1 could contribute to oncogenic MET signaling in HCC and other cancers, and that MET inhibitors might be useful in treating these patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Células COS , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Cloroquina/farmacologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Leupeptinas/farmacologia , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...